Cooperative Relay Beamforming Design
for Multi-Cluster Relay Interference Networks

by

Zilong Yang

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of
MASTER OF APPLIED SCIENCE
in
The Faculty of Engineering and Applied Science
Department of Electrical, Computer and Software Engineering

University of Ontario Institute of Technology
August 2016
© Copyright by Zilong Yang, 2016
Contents

1 Introduction 1
 1.1 Overview ... 1
 1.2 Motivation and Objective .. 3
 1.3 Thesis Contribution .. 4
 1.4 Thesis Organization ... 5
 1.5 Notations ... 5

2 Literature Review 6
 2.1 Relay Network .. 6
 2.2 Beamforming Technique .. 7
 2.3 Single-Cluster Relay Beamforming Design 9
 2.3.1 Single S-D Pair Relay Beamforming 9
 2.3.2 Multi-user Peer-to-Peer Relay Beamforming 11
 2.4 Multi-cluster Relay Beamforming Design 12
 2.5 Relay Beamforming Design Objectives 13
 2.5.1 Relay Power Minimization 13
 2.5.2 Maximization of Minimum SINR Among Users 14
 2.6 Optimization Approach ... 14
 2.6.1 SDR Approach .. 15
 2.6.2 Closed-Form Beamformer Design 16

3 Single Pair Relay Beamforming Design for Multi-cluster Relay Interference Networks 18
 3.1 System Model .. 18
 3.2 Low Complexity Multi-cluster Relay Beamforming Design 22
 3.2.1 Structured Beam Matrix 22
 3.2.2 ZF Beam Matrix Design 23
 3.2.3 MRC Beam Matrix Design 28
 3.2.4 Optimization of \{\alpha_i, \beta_i\} via SDR Approach .. 30
 3.3 Optimization through Direct SDR Approach 36
 3.4 Complexity Analysis and Comparison 36
 3.5 Simulation Results .. 37
 3.5.1 SINR Performance .. 38
 3.5.2 Power Allocation ... 39
 3.5.3 Computational Time .. 44
3.6 Summary ... 45

4 Multi-user Relay Beamforming Design for Multi-cluster Relay Interference Networks ... 47
 4.1 System Model .. 47
 4.2 Low Complexity Multi-cluster Relay Beamforming Design .. 51
 4.2.1 Structured Beam Matrix ... 51
 4.2.2 ZF Beam Matrix Design ... 52
 4.2.3 MMSE Beam Matrix Design 56
 4.2.4 Optimization of \(\{\alpha_i, \beta_i\} \) via SDR Approach .. 61
 4.3 Complexity Analysis and Comparison 65
 4.4 Simulation Results ... 65
 4.4.1 SINR Performance .. 66
 4.4.2 Power Allocation .. 69
 4.4.3 Computation Time .. 71
 4.5 Summary ... 74
 4.6 Appendices .. 75
 4.6.1 Proof of Proposition 4.1 .. 75

5 Conclusions ... 78

Bibliography .. 80
List of Figures

2.1 A relay network .. 7
2.2 Beamforming technique .. 8
3.1 A relaying network with K clusters................................. 19
3.2 Relay layout, $K = 2, M = 4, d_0 = 1.0$ 38
3.3 SINR vs. $\overline{\text{SNR}}_{SR} (M = 4, d_0 = 1.0, Pr = MP_0)$. 40
3.4 SINR vs. $\overline{\text{SNR}}_{SR} (M = 4, d_0 = 1.6, Pr = MP_0)$. 40
3.5 SINR vs. $\overline{\text{SNR}}_{SR} (M = 4, d_0 = 2.2, Pr = MP_0)$. 41
3.6 SINR vs. $\overline{\text{SNR}}_{SR} (M = 4, d_0 = 1.0, Pr = MP_0)$. 41
3.7 SINR vs. $\overline{\text{SNR}}_{SR} (M = 4, d_0 = 1.6, Pr = MP_0)$. 42
3.8 SINR vs. $\overline{\text{SNR}}_{SR} (M = 4, d_0 = 2.2, Pr = MP_0)$. 42
3.9 Power distribution vs. $\overline{\text{SNR}}_{SR}$ for Cluster 1 ($M = 4$). Top: $d_0 = 1.0$; Middle: $d_0 = 1.6$; Bottom: $d_0 = 2.2$. 43
3.10 Power distribution vs. $\overline{\text{SNR}}_{SR}$ for Cluster 2 ($M = 4$). Top: $d_0 = 1.0$; Middle: $d_0 = 1.6$; Bottom: $d_0 = 2.2$. 44
3.11 Average processing time vs. M ($d_0 = 1.0$). 45
4.1 A relaying network with K clusters 48
4.2 Relay layout, $K = 2, M = 8, N = 2, d_0 = 1.0$ 66
4.3 SINR vs. $\overline{\text{SNR}}_{SR} (M = 4, d_0 = 2.2, Pr = MP_0)$. 67
4.4 SINR vs. $\overline{\text{SNR}}_{SR} (M = 6, d_0 = 2.2, Pr = MP_0)$. 68
4.5 SINR vs. $\overline{\text{SNR}}_{SR} (M = 8, d_0 = 2.2, Pr = MP_0)$. 68
4.6 SINR vs. $\overline{\text{SNR}}_{SR} (M = 4, d_0 = 1.6, Pr = MP_0)$. 70
4.7 SINR vs. $\overline{\text{SNR}}_{SR} (M = 4, d_0 = 1.0, Pr = MP_0)$. 70
4.8 Power distribution vs. $\overline{\text{SNR}}_{SR}$ for Cluster 1 ($M = 4$). Top: $d_0 = 1.0$; Middle: $d_0 = 1.6$; Bottom: $d_0 = 2.2$. 72
4.9 Power distribution vs. $\overline{\text{SNR}}_{SR}$ for Cluster 2 ($M = 4$). Top: $d_0 = 1.0$; Middle: $d_0 = 1.6$; Bottom: $d_0 = 2.2$. 72
4.10 Power distribution vs. $\overline{\text{SNR}}_{SR}$ for Cluster 1 ($d_0 = 1.0$). Top: $M = 4$; Middle: $M = 6$; Bottom: $M = 8$. 73
4.11 Power distribution vs. $\overline{\text{SNR}}_{SR}$ for Cluster 2 ($d_0 = 1.0$). Top: $M = 4$; Middle: $M = 6$; Bottom: $M = 8$. 73
4.12 Average processing time vs. M ($d_0 = 1.0$). 74
In this work, we consider a multi-cluster amplified-and-forward (AF) relay interference network and design relay beam matrix for each cluster to maximize the minimum signal-to-interference-and-noise ratio (SINR) at destinations subject to the relay power budget within each cluster. Both single and multiple source-destination (S-D) pair scenarios are considered. We propose a beam matrix structured as a weighted sum of two types of beam matrices: zero forcing (ZF) beam matrix for inter-cluster interference suppression, and another beam matrix for beamforming gain maximization within a cluster. Maximum ratio combining (MRC) and minimal mean square error (MMSE) are chosen to design the second beam matrix in single and multiple S-D pair scenarios, respectively. The optimal solution for each type of beam matrix is obtained in closed form. We then obtain the optimal weights to each type of beam matrix by transforming the max-min SINR problem and solving it via the SDR approach.

Compared with applying the direct SDR approach to the original problem, our solution offers similar performance with significantly lower computational complexity. In addition, our proposed structured beam matrix clearly reveals the power shift between interference suppression among clusters and beamforming gain maximization within the cluster as the distance among clusters or the size of clusters changes.
Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor Prof. Min Dong for her continuous support, guidance and motivation during my thesis writing and also the two years of my study. It has been a privilege and an invaluable asset for me to study under her supervision. Her enthusiasm, professionalism and immense knowledge have helped me make every progress in my research.

Also I would like to thank Prof. Shahram Shahbazpanahi and Prof. Ali Grami for their instructions, assistance and patience. They have given excellent courses, and have been making great efforts to communicate knowledge to each and every one of their students.

I want to thank my fellow research mates in wireless communication group: Dr. Tianyi Li, Fatemeh Amirnavaei, Wen Li and also Jiangwei Chen and Mingchun Chang for all the discussion we made, all the ideas we shared, all the help you gave me and all the legacies you guys left behind.

Last but not the least, I would like to thank my family from both sides, for supporting both of us spiritually and physically throughout the days of studying abroad.
Chapter 1

Introduction

1.1 Overview

Thanks to the rapid proliferation of rich multimedia services like social media, e-business and smart phones, the past decade have witnessed a fast increasing demand for wireless data services. A report from the Cellular Telephone Industries Association (CTIA) [1] shows that the data traveled across U.S. wireless networks has increased explosively by some 20 times from approximate 191 billion megabytes (MB) in 2009 to more than 4 trillion MB in 2014. To cater this huge demand, numerous wireless technologies have been developed and put into practice to improve the speed, quality and reliability of a wireless system. In this thesis, we focus on two of such techniques: cooperative relay networks and beamforming.

Cooperative relaying is an important technique adopted in many practical wireless systems or applications, such as Long-Term Evolution (LTE) for the 4th-generation cellular networks [2], wireless local network (WLAN), etc. It can achieve spacial diversity without the need of multi-antennas, and has the potential of significantly improving the coverage, capacity and energy saving of a network. In cooperative relay beamforming, a set of relays work together and form a virtual multi-antenna array
to process and forward received signals. By combining channels coherently, transmit power is then focused towards the direction of each desired user to form both power gain and diversity gain at destination for higher received signal-to-noise ratio (SNR).

In a cooperative relay networks, relay interference is a common issue when there are multiple source-destination pairs communicating through relays. In a multi-user peer-to-peer (MUP2P) relay network, interference comes from other sources in the same cluster. In a relay interference network, multiple source-destination (S-D) pairs, each communicating through their own dedicated relay(s), form multiple relaying clusters. In this scenario, interference could also come from users and relays from other relay clusters, possibly from adjacent cell. Examples include relay-assisted transmission at neighboring cells in a cellular network forming multiple relaying clusters, where each S-D pair suffers from inter-cluster interference. Another example would be the wireless ad-hoc network where each participating nodes can serve as a relay by forwarding data for other nodes; the capacity of the network is limited by the mutual interference from concurrent transmissions among nodes [3]. An efficient design of cooperative relaying to reduce inter-cluster interference for simultaneous transmissions is important in such networks. In this work, we study the design of amplified-and-forward (AF) multi-antenna relaying in relay interference networks. We consider multi-antenna relay beamforming technique for signal processing and forwarding. The goal is to design relay beam matrix in such multi-cluster relay interference networks to reduce inter-cluster interference and maximize beamforming gain from source towards each destination.
1.2 Motivation and Objective

Most existing works consider single cluster relay networks. Very few literature works consider multi-cluster relay interference networks, either with single or multiple S-D pairs. However, such scenario often arises in practical systems such as cellular networks, where S-D pairs may be at neighboring cells and do not share the common relays. Also, studies show that it maybe beneficial to divide a large relay network into multiple clusters, either geographically or functionally, to improve the transmission efficiency [4]. Relay beamforming design in a multi-cluster network has to consider interference from other sources and relays in other clusters.

Furthermore, most of the existing works that consider multi-user beamforming, either in MUP2P or multi-cluster cases, choose relay power minimization as the design objective instead of signal-to-interference-and-noise ratio (SINR) maximization. Such formulated optimization problem has the feasibility issue\(^1\). In addition, existing works often use the semidefinite relaxation (SDR) method as a typical approach to obtain a solution for many similar relay beamforming optimization problems, which can be computationally expensive when the problem size is large.

Considering all the above factors, in this thesis, we investigate into the relay beamforming design in a multi-cluster relay interference network, and aim at developing a low-complexity solution which maximizes the minimum SINR for all users subject to the relay power budget within each cluster.

\(^1\)For power minimization problem, there might be cases when there is no solution that satisfy the constraints, thus the problem is infeasible
1.3 Thesis Contribution

In this thesis, we consider relay beamforming design in a multi-cluster relay interference network for both single and multiple S-D pair cases. We aim to develop a low-complexity solution which maximizes the minimum SINR for all users subject to a per-cluster relay power budget.

For single S-D pair scenario, we propose a structured relay beam matrix as a weighted sum of two types of beam matrices: zero forcing (ZF) beam matrix for inter-cluster interference suppression, and the maximum ratio combing (MRC) beam matrix for maximizing the beamforming gain within the cluster. We obtain the optimal solution for each type of the beam matrix in closed form. The optimal weight to each type of beam matrix is then obtained by transforming the max-min SINR problem and solving it via the SDR approach. Comparing with applying the direct SDR approach to the original problem, our proposed solution offers both similar performance and significant computational complexity reduction. Furthermore, our proposed structured beam matrix clearly revealed the power shift between interference suppression among clusters and beamforming gain maximization within the cluster as the distance among clusters changes.

For multiple S-D pairs scenario, a similar structured relay beam matrix consisting of ZF and minimum mean squared error (MMSE) beam matrix is proposed for interference suppression and beamforming gain maximization, respectively. The optimal weight to each type of beam matrix is also obtained by transforming and solving the question through the SDR approach. Simulations show that our proposed solution
provides similar SINR performance with that of direct approach, and the performance gap decreases as the number of relays increases. Additionally, proposed approach also has significant lower computational complexity and the ability of revealing the power shift as the distance among clusters or size of cluster changes.

1.4 Thesis Organization

The rest of this thesis is organized as follows: In Chapter 2, a literature review is carried out on the recent studies of relay beamforming and commonly used optimization objectives and approaches in dealing with these problems. In Chapter 3, single S-D pair relay beamforming design in multi-cluster relay interference networks is developed. In Chapter 4, a multi-cluster relay beamforming problem with multiple S-D pairs in each cluster is then investigated. The conclusion is provided in Chapter 5.

1.5 Notations

Trace, Hermitian, transpose, and conjugate of A are denoted by $\text{tr}[A]$, A^H, A^T, and A^*, respectively. The Kronecker product is denoted as \otimes. $\text{vec}(A)$ vectorizes $A = [a_1, \cdots, a_N]$ to $[a_1^T, \cdots, a_N^T]^T$. A semi-positive definite matrix A is denoted as $A \succeq 0$, and I denotes the identity matrix. Notation $\text{bdg}(A_1, \cdots, A_N)$ denotes a block diagonal matrix with A_i being the ith diagonal block. $[A]_{i,j}$ denotes the (i, j)th entry of A, and $[a]_i$ means the ith element of a.
Chapter 2

Literature Review

2.1 Relay Network

Due to fading effect, transmission through wireless channels suffers from severe attenuation in signal strength. As the effect of fading is related with the distance between source and destination, long transmission distance will result in weak receive signal and poor SNR performance.

To combat fading, relay techniques are adopted to help forward signal between two nodes. An example of a relay network is shown in Fig. 2.1, where a relay station (RS) receives signal from the source and then forwards the signal to the destination. Early studies of relay can be dated back to [5,6]. Later on, different aspects of relay networks, such as capacity, diversity gain and performance improvement have been studied [7–21].

In a relay network, each relay not only forwards the desired signal, but also sends amplified noise at the relay to the destination. When there are multiple S-D pairs, the relay forwards interference originated from other sources to the destination, too. To mitigate the effect of interference, different relaying approaches can be adopted, such as the AF scheme [22–24] and the decode and forward scheme (DF) [25,26]. The
AF scheme is easy to apply, where the relay simply amplifies and retransmits the signal received from the source. In a DF scheme, the relay first decodes the received signal and then retransmits the decoded and regenerated symbols to the destination. It produces better signals at the cost of more complex hardware, as a decoding block is needed at the relay.

2.2 Beamforming Technique

In a multi-antenna system, beamforming technique can be used to obtain diversity and power gains [27]. For beamforming, all the antennas transmit the same symbol and then combine signal over each antenna coherently at a destination, as shown in Fig. 2.2. By utilizing channel information (direction and strength) at transmitter side, beamforming can achieve certain benefits, including improved SNR, power usage reduction and extended transmission range. Depending on the capability of
Figure 2.2: Beamforming technique

Sharing information between antennas, beamforming technique can be classified into distributed and centralized beamforming.

Distributed beamforming is a beamforming technique in which multiple independent antennas simultaneously transmit the same signal with controlled phase and synchronized frequency, so that signal can be constructively combined at a destination. Depending on design objectives and constraints, advantages like energy efficiency, improved received SNR and security against eavesdropping can be achieved [23, 28–30]. For relay network, distributed beamforming can be used in both AF and DF schemes.

Centralized Beamforming is a centralized technique that utilizes multiple antennas to process signal. When a signal is transmitted to a destination, it is first processed over multi-antennas and then sent through independent paths, and at last added coherently together at destination. This approach also allows transmitter to use certain processing procedures, like ZF or MRC [31, 32]. For relay beamforming, if the total number of antennas in a relay network is fixed, centralized relay beamforming will always have a better or equivalent performance as comparing with distributed
beamforming [33,34].

2.3 Single-Cluster Relay Beamforming Design

In this section, we review relay beamforming design in both single S-D pair and MUP2P scenarios.

2.3.1 Single S-D Pair Relay Beamforming

Many existing works have studied the optimal design of the AF relay processing matrix in a single S-D pair environment with a multi-antenna relay [22,35–39]. In [35], an optimal weighting matrix for multiple-input multiple-output (MIMO) relay is found to maximize capacity under a total relay power constraint. Paper [22] considers MIMO relay beamforming problem in both full channel state information (CSI) and receiver CSI only cases. It aims to maximize receive SNR at destination under source and relay power constraint. An optimal beamforming scheme is provided for the full CSI case, while a quantized beamforming scheme is proposed for receiver CSI case using Grassmannian codebooks. Authors in [37] use receiver SNR as criterion, and develop a general rank beamforming matrix based on the second order statistics of the channel coefficients subject to constrained relay transmission power. They also show that a closed-form solution can be found with correlated source-relay and relay-destination channels.

Multiple single-antenna relays forming distributed beamforming has also been discussed in [12,23,40,41]. By assuming perfect CSI at relay, a distributed beamformer with closed form solution has been obtained in [12] which maximizes SNR at receiver
under per-relay power constraint. Paper [40] assumes both the relay beamforming weights and the transceiver transmit powers to be the design parameters, and achievable beamforming rate region is characterized under a total (network) transmit power constraint. Authors of [41] develop relay power allocation algorithms for non-coherent and coherent AF relay networks. A robust method is proposed in this paper which takes the absence of global CSI into consideration, and the goal is to minimize the total relay transmission power under individual relay power constraints, while satisfying quality of service (QoS) requirement.

The cost of relay cooperation, such as exchanging control and data signals among relays, or system-level synchronization can outweigh the benefits, thus relay selection scheme is proposed and studied in [42–49]. Most of the works focus on single relay selection, either using AF scheme [42–44] or DF scheme [45–47], where only one relay cooperates. Multiple relay selection is discussed in [48] assuming perfect CSI and power constraint at each relay. Selection schemes which achieve full diversity order are proposed in [48] for both single and multi-relay selection problems, with complexity linear and quadratic to the number of relays, respectively. A joint optimization of multi-relay selection and beamforming problem is studied in [49], where a subset of relays and their joint linear beamformer are found based on second order channel statistics, so that the receiver SNR is maximized subject to per-relay power requirement. The NP-hard mix-integer problem is solved by using the SDR approach with a guaranteed approximation performance.
2.3.2 Multi-user Peer-to-Peer Relay Beamforming

For relay networks with multiple S-D pairs, many studies have been done by considering S-D pairs sharing common relays and forming a single cluster. In this scenario, the problems are typically non-convex and difficult to solve. Numerical algorithms have been developed to obtain approximate solutions.

For total relay power minimization among relays or among all network nodes, relay beamforming design has been studied in [15, 24, 28, 50, 51]. Paper [50] designs beamforming weights for distributed relays through the minimization of total relay power while satisfying the SINR targets at the destinations. SDR is used to convert the non-convex minimization problem into a semidefinite programming (SDP) problem, which can be efficiently solved numerically using standard SDP software, such as SeDuMi [52, 53]. A joint optimization of source power allocation and relay beamforming is considered [51] in a distributed MUP2P AF relay networks. It minimizes total power transmitted from all sources and relays while meeting SINR constraints of each source-destination pair. An iterative feasibility search algorithm is proposed to help find the optimal solution of the problem.

Apart from the total relay power minimization, per relay power minimization and per-antenna power minimization are considered recently in [54, 55] for MUP2P AF relay networks, under target QoS requirements. Multi-user multi-channel cooperative relay beamforming with single antenna relay is considered in [54], where semi-closed form relay beam vectors are obtained through Lagrange dual approach. Paper [55] considers multi-antenna relay, and a low-complexity approximate solution using La-
grange dual approach is developed with semi-closed-form structure. A combination of these two methods is also proposed as a trade-off between performance and complexity.

2.4 Multi-cluster Relay Beamforming Design

Unlike single cluster scenario, very few studies have directly addressed the problem of relay beamforming in multi-cluster relay networks. However, such scenario often arises in practical systems such as cellular networks, where S-D pairs may be at neighboring cells and do not share the common relays. Also, it maybe beneficial to divide a large relay network into multiple clusters, either geographically or functionally, to improve the transmission efficiency, as the per-node through output of capacity of a wireless ad-hoc network reduces rapidly with an increasing network size [4].

In a multi-cluster relay network, communication suffers from both inter-cluster and intra-cluster interference. The subject of relay interference networks have been studied in [56–59]. [56] uses a deterministic two-stage interference channel model to study the characteristic of relay-interference networks, and shows the necessity of using interference-targeted transmission scheme, such as interference suppression, interference alignment and interference separation for relay-interference networks. An approximate characterization of the capacity region of a two-stage relay-interference network is studied in [58] using a new interference management scheme term interference neutralization. Paper [59] investigates the degrees of freedom of the interference channel in the presence of a dedicated MIMO relay. By using a hybrid coding strategy that exploits both direct link and MIMO relay, it achieves full degree of freedom for
Recently, the multi-cluster relay beamforming has been considered in [60] to minimize the total relay power of all clusters while meeting SINR requirements at destinations. It assumes channel second order statistics are available at relay. The NP-hard non-convex problem is then relaxed into an SDP problem, and a semi-distributed iterative method has been proposed to solve it.

2.5 Relay Beamforming Design Objectives

Different designing philosophies and various optimization goals have been suggested in the study of relay beamforming problem, and among them the more commonly used ones are relay power minimization and the maximization of minimum SINR among users.

2.5.1 Relay Power Minimization

Relay power minimization, including per-antenna, per-relay and total relay power minimization, minimizes relay transmission power subject to QoS constraints under different assumptions of channel knowledge. They have been commonly used as design objectives since the power functions are quadratic and the problem is tractable. However, these optimization problems also have a common feasibility issue, as the satisfaction of QoS constraints also depends on the transmit power and channel conditions. It may not always be possible to satisfy any given QoS target.

In aforementioned papers, [35, 40, 41, 50, 51, 60] consider total relay power minimization, while per antenna and per relay power minimization problems are considered
The SDR approach is often used to solve relay power minimization problems. Because of the quadratic objective functions, some times dual approach can be used as a complement with performance close to that of SDR approach but much lower computational complexity [33,39,55].

2.5.2 Maximization of Minimum SINR Among Users

The maximization of minimum SINR criterion maximizes the minimal SINR among destinations for MUP2P case, or simply SNR for single user case, while satisfying different relay power constraints. It improves the worst user QoS for given network conditions, and the optimization problem is always feasible. It’s a less commonly used formulation as compared with the power minimization problem, because of the SINR (or SNR) objective function is a non-convex function with respect to (w.r.t.) beam vectors or matrices. Thus these problems are often hard to solve.

In aforementioned works, [12,23,37,49] consider maximizing minimum SNR in a single S-D pair network, with distributed relays [12,23,49] or a centralized relay [37]. The SDR approach is often used to solve these problems. In some special cases, e.g. with a centralized relay or distributed relay with per-relay power constraint, closed form beamformer designs are also available [12,37].

2.6 Optimization Approach

There are several optimization methods used in literature to solve the relay beamforming problems. The SDR approach is perhaps the most commonly used one, as these problems are usually non-convex. Additionally, many closed form solutions may exist
for centralized relay cases with much lower complexity than SDR. As mentioned in
Section 2.5.1, the dual approach can be used as a complement for power minimization
problem.

2.6.1 SDR Approach

The SDR technique has been at very popular in the study of signal processing and
communications in recent years. It is a powerful, computationally efficient approxima-
tion technique which can be applied to many non-convex quadratically constrained
quadratic programs (QCQP) [16, 61, 62].

As mentioned in Section 2.5, in relay beamforming SDR approach can be used to
solve either relay power minimization [50] or max-min SINR [23] problems. By ex-
pressing the original problem in quadratically constraint quadratic problem (QCQP)
form and then transforming it into an SDP, it can then be solved using standard SDP
software, such as SeDuMi [52, 53], in polynomial time. After obtaining the solution of
the SDP, the result may not be rank one in general thus solutions can’t be extracted
directly from the result. For these cases, randomization techniques like [63] are needed
to extract a rank-one solution from the result.

It is worth mentioning that because of the exitance of non-rank-one results and
the randomization process used to exert a solution, SDR in many cases only offers a
sub-optimal solution. Furthermore, although it can be solved in polynomial time, the
complexity of SDP is affected by problem size and number of constraints [64], thus it
can still be relative high when we have a big network or a large number of users.
2.6.2 Closed-Form Beamformer Design

When we have a multi-antenna relay or multiple relays capable of information sharing forming a virtual multi-antenna, beamforming schemes can benefit from spatial processing at the nodes. By exploiting more degrees of freedom in beamforming matrix brought by multi-antennas, many beamformers with closed form solutions can be found [22, 32, 37, 65]. These methods aim at different optimization goals and are highly computationally efficient.

In [22], a non-regenerative multiple-antenna relaying strategy is developed which maximizes the capacity between a multi-antenna source and the multi-antenna destination. The resulting beamforming matrix turns out to be full rank. Similar problem is also addressed in [65] with SNR maximization as design objective. Assuming second-order channel statistics, a general rank beamforming approach is proposed [37] for a single antenna S-D relay network, where the receive SNR is maximized under the total relay power requirement.

Linear transmit processing criteria for MIMO systems [31], like ZF, minimum mean square error (MMSE, or Wiener filter) and match filter (MF), can also be used in multi-antenna relay beamforming. In [32], all 3 criteria mentioned above are used in a non-regenerative multi-group multi-way (MGMW) relay network. It aims at maximizing the sum rate of the MGMW network. ZF, MMSE and MF are used to design generalized low-complexity transceive beamforming schemes for N-phase multi-way relaying. It is worth mentioning that all these schemes are sub-optimal, as can be seen from [32] that their optimization goals often do not fully align with the original
objectives.
Chapter 3

Single Pair Relay Beamforming Design for Multi-cluster Relay Interference Networks

In this chapter, we consider a relay beamforming design in a multi-cluster AF relay network with a single pair and M relays per cluster. We aim to maximize the minimum SINR at destinations subject to a total relay power budget within each cluster.

3.1 System Model

We consider a two-hop relay network with K S-D pairs, where each pair communicates through a set of M dedicated relays, as shown in Fig. 3.1. They form K clusters of nodes for half-duplex relaying. This scenario could arise in a cellular environment where each cell may contain such relaying clusters, or in an ad-hoc environment where multiple peer-to-peer S-D pairs communicate through relays forming multiple relaying clusters. Let S_i and D_i denote the source and destination nodes for S-D pair i, each equipped with a single antenna. We assume that the dedicated relay(s) for each pair can be either a multi-antenna relay or multiple relays capable of signal sharing to form virtual multi-antenna, and we generally consider them as a relay cluster. Let
Figure 3.1: A relaying network with K clusters.

$C_i = \{R_{i1}, \cdots, R_{iM}\}$ denote M relay antennas in the relay cluster for S-D pair i, for $i = 1, \cdots, K$. We assume $K \leq M$. Let $f_{i,jm}$ denote the complex channel coefficient between S_i and $R_{jm} \in C_j$, and $g_{jm,i}$ the complex channel coefficient between $R_{jm} \in C_j$ and D_i.

We assume that the AF relaying protocol is used, and the direct links between the source and the destination nodes are ignored. In the first phase, all sources transmit their signals to the relays. The received signal vector at relay cluster C_i is given by

$$r_i = \sum_{j=1}^{K} \sqrt{P_0} f_{j,i} s_j + v_i, \quad i = 1, \cdots, K \quad (3.1)$$

where $f_{j,i} \triangleq [f_{j,i1}, \cdots, f_{j,iM}]^T$ is the channel vector between S_j and relay cluster C_i, s_j is the transmitted signal from S_j with $E|s_j|^2 = 1$ and $E[s_i s_j] = 0, \forall i \neq j$, P_o is the transmit power\(^1\), and $v_i \in \mathbb{C}^{M \times 1}$ is the additive white Gaussian noise (AWGN) vector at relay cluster C_i with covariance matrix $\sigma_v^2 I$.

\(^1\)For simplicity, we assume the same transmit power P_o for all sources. Extension to different transmit power at different source is straightforward.
In the second phase, received signal vector \mathbf{r}_i is processed with a beam matrix $\mathbf{W}_i \in \mathbb{C}^{M \times M}$, and the received signal at D_i is given by

$$z_i = \sum_{j=1}^{K} \mathbf{g}_{j,i}^T \mathbf{W}_j \mathbf{r}_j + n_i$$

where $\mathbf{g}_{j,i} \triangleq [g_{j,1,i}, \cdots, g_{j,M,i}]^T$ denotes the channel vector between relay cluster \mathcal{C}_j and destination D_i, and n_i denotes the AWGN noise at D_i with variance σ_n^2. Note that only the signal from S_i to D_i via its own relay cluster \mathcal{C}_i is regarded as the intended signal for decoding. All other received signals are considered as interference. Due to the presence of multiple relay clusters, the received signal z_i can be decomposed into the following components

$$z_i = \sqrt{P_0} \mathbf{g}_{i,i}^T \mathbf{W}_i \mathbf{f}_i s_i + \sqrt{P_0} \sum_{j=1, j \neq i}^{K} \mathbf{g}_{j,i}^T \mathbf{W}_j \mathbf{f}_i s_i$$

$$+ \sqrt{P_0} \sum_{j=1, j \neq i}^{K} \sum_{k=1}^{K} \mathbf{g}_{k,i}^T \mathbf{W}_k \mathbf{f}_{j,k} s_j + \sum_{j=1}^{K} \mathbf{g}_{j,i}^T \mathbf{W}_j v_j + n_i$$

(3.2)

where the first term is the intended signal from S_i; the second term is the interference from other relay cluster \mathcal{C}_j, $j \neq i$, that is originated from S_i; the third term is the interference from S_j, $j \neq i$, and the fourth term is the amplified noise forwarded by all relay clusters. Based on (3.2), the receive SINR at D_i is given by

$$\text{SINR}_i = \frac{P_0 |\mathbf{g}_{i,i}^T \mathbf{W}_i \mathbf{f}_i|^2}{I_i + \sigma_n^2 \sum_{j=1}^{K} ||\mathbf{g}_{j,i}^T \mathbf{W}_j||_2^2 + \sigma_n^2},$$

(3.3)
where I_i is the interference power at D_i, given by

$$I_i \triangleq P_0 \mathbb{E}\{\sum_{j=1, j \neq i}^{K} g_{j,i}^T W_j f_{i,j} s_i (\sum_{j'=1, j' \neq i}^{K} g_{j',i}^T W_{j'} f_{i,j'} s_i)^*\}$$

$$+ P_0 \mathbb{E}\{\sum_{j=1, j \neq i}^{K} \sum_{k=1}^{K} g_{k,i}^T W_{k} f_{j,k} s_j (\sum_{j'=1, j' \neq i}^{K} g_{k',i}^T W_{k'} f_{j',k'} s_{j'}^*)\}$$

$$= P_0 \sum_{j=1}^{K} g_{j,i}^T W_j f_{j,i} (\sum_{j'=1, j' \neq i}^{K} g_{j',i}^T W_{j'} f_{j'} s_i)^* \mathbb{E}[s_i s_i^*]$$

$$+ P_0 \sum_{j=1, j \neq i}^{K} \sum_{k=1}^{K} g_{k,i}^T W_{k} f_{j,k} (\sum_{k'=1}^{K} g_{k',i}^T W_{k'} f_{j,k'} s_j)^* \mathbb{E}[s_j s_j^*]$$

$$= P_0 \left(\sum_{j=1, j \neq i}^{K} g_{j,i}^T W_j f_{j,i} \right)^2 + \sum_{j=1, j \neq i}^{K} \left(\sum_{k=1}^{K} g_{k,i}^T W_{k} f_{j,k} \right)^2. \quad (3.4)$$

(3.5)

Let P_r denote the total relay power budget at each relay cluster. The outputs of C_i should satisfy $\mathbb{E}\{||W_i r_i||_2^2\} \leq P_r$.

Our goal is to design $\{W_i\}$ for the relay clusters to maximize the minimum SINR at the destinations, while satisfying relay power constraint P_r, given by

$$\max_{\{W_i\}} \min_i \text{SINR}_i$$

s.t. $\mathbb{E}\{||W_i r_i||_2^2\} \leq P_r, \ i = 1, \cdots, K. \quad (3.6)$

The above max-min SINR problem can be equivalently expressed as follows

$$\text{(OP}_1\text{)} \quad \max_{\{W_i\}, \gamma} \quad \gamma$$

s.t. $\mathbb{E}\{||W_i r_i||_2^2\} \leq P_r,$

$$\text{SINR}_i \geq \gamma, \ i = 1, \cdots, K. \quad (3.7)$$

OP$_1$ is non-convex due to the non-convex SINR constraints w.r.t. $\{W_i\}$ in (3.7). Finding an optimal solution for OP$_1$ directly is difficult. The focus is to find an algorithm with good performance and also being computationally efficient. Typical approaches to solve this problem could be exploring some convex relaxation or
convexification techniques to obtain a suboptimal solution \(\{W_i\} \). However, these numerically obtained beam matrices are usually difficult to analyze or to provide any insight into the structures of the solution. Instead, in this chapter, we construct the beam matrix using a linear combination of two specific types of beam matrices, and study the optimal weight for each type of beam matrix. Not only can our solution be efficiently obtained with low complexity, but also it reveals how the weights on two types of beam matrices shift as the topology of the multiple relay clusters changes.

3.2 Low Complexity Multi-cluster Relay Beamforming Design

In this section, we consider constructing the relay beam matrix using a weighted sum of two specific types of beam matrices, and then study the optimal weight for each type of beam matrix.

3.2.1 Structured Beam Matrix

As we know, when there is only a single S-D pair with no interference, the beam matrix \(W_i \) should be designed to maximize the beamforming gain for the source signal. When there are other relaying clusters causing inter-cluster interference to the intended signal, the beam matrix should be designated to reduce or cancel the interference. Based on this, instead of finding the beam matrix \(W_i \) in OP₁ directly, we construct \(W_i \) by a weighted sum of two types of beam matrices, i.e., ZF beam matrix \(W_i^{ZF} \) and MRC beam matrix \(W_i^{MRC} \), as follows

\[
W_i = \alpha_i W_i^{ZF} + \beta_i W_i^{MRC}, \ i = 1, \cdots, K.
\] (3.8)
where α_i and β_i are the weights for W_{ZF}^i and W_{MRC}^i, respectively. Specifically, W_{ZF}^i is designed based on ZF criterion to cancel interference from and to the other clusters, while W_{MRC}^i is designed to only maximize SNR for the signal forwarded within its own cluster without considering interference. Given the structure of W_i in (3.8), OP$_1$ is reformulated into the following problem

$$\begin{align*}
&\text{(OP$_2$)} \quad \max_{\{\alpha_i, \beta_i\}} \gamma \\
&\text{s.t. } E\{|\|W_i r_i\|_2^2\| \leq P_r, \\
&SINR_i \geq \gamma, \\
&W_i = \alpha_i W_{ZF}^i + \beta_i W_{MRC}^i, \ i = 1, \cdots, K.
\end{align*}$$

Note that since both W_{ZF}^i and W_{MRC}^i can be determined using their respective design criteria, the remaining parameters to be optimized are only weights $\{\alpha_i, \beta_i\}$, $i = 1, \cdots, K$.

3.2.2 ZF Beam Matrix Design

We now design ZF beam matrix W_{ZF}^i at the relay cluster i to cancel interference from/to other clusters. The ZF beam matrix is given by the following structure

$$W_{ZF}^i = w_{ZF,T,i} w_{ZF,R,i}^H,$$

where $w_{ZF,R,i}$ and $w_{ZF,T,i}$ are the $M \times 1$ receive ZF beam vector and transmit ZF beam vector, respectively. Since only s_i is the desired signal for cluster i, the receive ZF beam vector $w_{ZF,R,i}$ should be designed to cancel interference originated from other sources $s_j, j \neq i$. This is given by

$$w_{ZF,R,i}^H r_i = \sqrt{P_o} s_i \mid v_i = 0,$$

(3.9)
which means when $v_i = 0$, received signal after the processing of $w_{r,i}^{ZF H}$ should be exactly equal to $\sqrt{P_o}s_i$. Rewrite received signal vector r_i at relay cluster C_i in (3.1) as

$$r_i = \sqrt{P_o}F_i s + v_i$$

where $F_i \triangleq [f_{1,i}, \cdots, f_{K,i}] \in \mathbb{C}^{M \times K}$ is channel state matrix from all sources to C_i, and $s \triangleq [s_1, \cdots, s_K]^T$. ZF constraint in (3.9) is equivalent to

$$F^H_i w_{r,i}^{ZF} = e_i,$$

(3.10)

where e_i is the unit vector with the ith entry being 1 and the elsewhere 0’s. Denote the received signal after receive ZF processing by $y_i \triangleq w_{r,i}^{ZF H} r_i$. The receive ZF problem can be formulated as

$$w_{r,i}^{ZF} = \arg \min_w \mathbb{E}\{|y_i - \sqrt{P_0}s_i|^2\}$$

(3.11)

s.t. $F^H_i w = e_i$

(3.12)

The objective function in (3.11) can be rewritten as

$$\mathbb{E}\{|y_i - \sqrt{P_0}s_i|^2\} = \mathbb{E}\{|w^H(\sqrt{P_0}F_i s + v_i) - \sqrt{P_0}s_i|^2\} = \mathbb{E}\{|\sqrt{P_0}(w^H F_i - e_i^T)s + w^H v_i|^2\}. $$

Substitute (3.12) into the above equation, we have

$$\mathbb{E}\{|y_i - \sqrt{P_0}s_i|^2\} = \mathbb{E}\{|w^H v_i|^2\} = \sigma_v^2 w^H w,$$

(3.13)

where $\mathbb{E}[v_i v_i^H] = \sigma_v^2 I$. The receive ZF problem has a quadratic and convex objective function (3.13), subject to a linear equality constraint (3.12). Thus it is convex and
can be solved by using the Lagrange multiplier method [66]. In this case, the Lagrange multiplier function for (3.11) can be formulated as

$$L(w, \lambda) \triangleq \sigma_v^2 w^H w - \sum_{j=1}^{K} \lambda_j [F_i^H w - e_i]_j$$

$$= \sigma_v^2 w^H w - \sum_{j=1}^{K} [\lambda]_j [F_i^H w - e_i]_j$$

$$= \sigma_v^2 w^H w - \sum_{j=1}^{K} \lambda^T e_j e_j^T (F_i^H w - e_i)$$

$$= \sigma_v^2 w^H w - \sum_{j=1}^{K} \operatorname{tr}(e_j e_j^T (F_i^H w - e_i) \lambda^T)$$

$$= \sigma_v^2 w^H w - \operatorname{tr}((F_i^H w - e_i) \lambda^T), \quad (3.14)$$

where λ_j is the Lagrangian multiplier, and $\lambda \triangleq [\lambda_1, \cdots, \lambda_K]^T \in \mathbb{R}^K$. Differentiate $L(w, \lambda)$ w.r.t. w and equating it to zero, we have

$$\frac{\partial L(w, \lambda)}{\partial w} = (\sigma_v^2 w^H)^T - (\lambda^T F_i^H)^T = 0.$$

From above we obtain that

$$w_{ZF, i}^{ZF} = F_i (F_i^H F_i)^{-1} e_i. \quad (3.15)$$

Note that since $K \leq M$, and entries of F_i are independent channel coefficients, $F_i^H F_i$ is invertible.

After receive ZF at relays, the transmit ZF beam vector $w_{ZF,T,i}^{ZF}$ is then applied. The received signals at all destinations from relay cluster C_i is given by

$$z = G_i w_{ZF,T,i}^{ZF} y_i + n,$$

where $G_i \triangleq [g_{i,1}, \cdots, g_{i,K}]^T \in \mathbb{C}^{K \times M}$ is the channel state matrix containing channels from C_i to all destinations, $z \triangleq [z_1, \cdots, z_K]^T$, and $n \triangleq [n_1, \cdots, n_K]^T$. The transmit
ZF beamforming design is to suppress transmit signals to all other clusters, while maximize the signal power intended to the destination D_i within its own cluster. The transmit ZF beamforming problem can be written as

$$w^{ZF}_{T,i} = \arg \max_w \mathbb{E}\{|g_{i,i}^T w y_i|^2\}$$ \hspace{1cm} (3.16)

subject to

$$\mathbb{E}\{|w y_i|^2\} \leq P_r$$ \hspace{1cm} (3.17)

$$G_i w y_i = 0$$ \hspace{1cm} (3.18)

where G_{i-} is the $(K - 1) \times M$ matrix obtained from G_i by removing the ith row $g_{i,i}^T$.

ZF constraint (3.18) implies that

$$G_i w^{ZF}_{T,i} = \kappa_{ZF,i} e_i,$$ \hspace{1cm} (3.19)

for some scaler $\kappa_{ZF,i}$. To solve the optimization problem, we first introduce the following Lemma.

Lemma 3.1. The objective function (3.16) is maximized when $\kappa_{ZF,i}$ is set such that constraint (3.17) is met with equality.

Proof. Assume (3.17) is met with inequality when (3.16) is maximized with β, equivalently we have

$$\mathbb{E}\{|w y_i|^2\} = \alpha P_r,$$

for $0 < \alpha < 1$ and some κ. It is straight forward to see that if we let $\kappa' = \kappa/\alpha$, we will have $w' = \frac{1}{\alpha} w$, and the objective function will become

$$\mathbb{E}\{|g_{i,i}^T w' y_i|^2\} = \frac{1}{\alpha^2} \mathbb{E}\{|g_{i,i}^T w y_i|^2\}$$

$$= \frac{\beta}{\alpha^2},$$
which is bigger than β, and in the mean time power constraint (3.17) is met with equality. ■

Also, the objective function (3.16) can be rewritten as

$$E\{|g_{\alpha,i}^T w_{y_i}|^2\} = E\{|e_i^T G_i w_{y_i}|^2\}$$

$$= \text{tr}(e_i^T G_i w R_{y_i} w^H G_i^H e_i), \quad (3.20)$$

where $R_{y_i} \triangleq E[y_i y_i^*]$, and (3.20) is convex w.r.t. w. Given the linear equality constraint in (3.17) and (3.19), the transmit ZF problem is convex and thus can be solved using the Lagrangian multiplier method with it’s Lagrangian written as

$$L(w, \lambda) \triangleq \text{tr}(e_i^T G_i w R_{y_i} w^H G_i^H e_i) - \sum_{j=1}^{K} \lambda_j [G_i w - \kappa e_i]_j$$

$$= \text{tr}(e_i^T G_i w R_{y_i} w^H G_i^H e_i) - \text{tr}((G_i w - \kappa e_i)\lambda^T),$$

where λ_j is the Lagrangian multiplier, $\lambda \triangleq [\lambda_1, \cdots, \lambda_K]^T \in \mathbb{R}^K$. Differentiate $L(w, \lambda)$ w.r.t. w and equating it to zero, we have

$$\frac{\partial L(w, \lambda)}{\partial w} = R_{y_i}(w^H G_i^H e_i e_i^T G_i)^T - (\lambda^T G_i)^T = 0$$

From above we can obtain that

$$w_{ZF,i} = \kappa_{ZF,i} G_i^H (G_i G_i^H)^{-1} e_i, \quad (3.21)$$

with

$$\kappa_{ZF,i}^2 = \frac{P_r}{[(G_i G_i^H)^{-1}]_{i,i} (P_0 + \sigma_v^2 \|w_{ZF,i}\|^2)}, \quad i = 1, \cdots, K.$$
Thus, using (3.15) and (3.21), we have ZF beam matrix W_i^{ZF}, for $i = 1, \cdots, K$, as

$$W_i^{ZF} = \kappa_{ZF,i} G_i^H (G_i G_i^H)^{-1} e_i e_i^T (F_i^H F_i)^{-1} F_i^H.$$

3.2.3 MRC Beam Matrix Design

For designing MRC beam matrix W_i^{MRC}, we are only concerned about the signal forwarded by its own relay cluster C_i. The goal is to maximize received SNRs at the relays in C_i and at destination D_i, respectively. Thus, we set the MRC beam matrix structure as

$$W_i^{MRC} = w_{r,i}^{MRC} w_{r,i}^{MRC H},$$

where $w_{r,i}^{MRC}$ and $w_{t,i}^{MRC}$ are the $M \times 1$ receive beam vector and transmit beam vector, respectively. The signal received at relay cluster C_i from its own intended source S_i, denoted by $r_{i,i}$, is given by

$$r_{i,i} = \sqrt{P_0} f_{i,i}^* s_i + v_i.$$

Receive beam vector $w_{r,i}^{MRC}$ is given by the following expression

$$w_{r,i}^{MRC} = \arg \max_w \frac{P_0 \mathbb{E}\{|w^H f_{i,i} s_i|^2\}}{\mathbb{E}\{|w^H v_i|^2\}}$$

(3.22)

The objective function can be simplified as

$$\frac{P_0 \mathbb{E}\{|w^H f_{i,i} s_i|^2\}}{\mathbb{E}\{|w^H v_i|^2\}} = \frac{P_0 w^H f_{i,i} \mathbb{E}[s_i s_i^*] f_{i,i}^H w}{w^H \mathbb{E}[v_i v_i^H] w} = \frac{w^H f_{i,i} f_{i,i}^H w}{\sigma_v^2 w^H w},$$

Since (3.22) is a maximization problem without constraint, it can be solved by taking derivation of the objective function w.r.t. w and set it to zero, which has only one
root. It is straightforward to obtain $w_{R,i}^{MRC}$ as

$$w_{R,i}^{MRC} = \frac{f_{i,i}}{||f_{i,i}||}. \quad (3.23)$$

After applying $w_{R,i}^{MRC}$ to the actual received signal vector r_i, we have

$$y_i = w_{R,i}^{MRC} r_i$$

$$= \sqrt{P_o}||f_{i,i}||s_i + \sqrt{P_o} \sum_{j=1,j\neq i}^K f_{i,i}^H f_{j,i} s_j + \frac{f_{i,i}^H}{||f_{i,i}||} v_i. \quad (3.24)$$

Applying transmit beam vector, the received signal at D_i with out considering interference from relays in other cluster is given by

$$z_{i,i} = g_{i,i}^T w_{T,i}^{MRC} y_i + n_i.$$

The received SINR for $z_{i,i}$ is then given by

$$\text{SINR}_{i,i} \triangleq \frac{P_o||f_{i,i}||^2 |g_{i,i}^T w_{T,i}^{MRC}|^2}{\sigma_v^2 |g_{i,i}^T w_{T,i}^{MRC}|^2 + \sum_{j=1,j\neq i}^K P_o ||f_{j,i}||^2 |g_{i,i}^T w_{T,i}^{MRC}|^2 + \sigma_n^2}, \quad (3.25)$$

where we consider the 2nd term in (3.24) as additive noise. The transmit beam vector $w_{T,i}^{MRC}$ is designed to maximize $\text{SNR}_{i,i}$ under the relay power constraint. The problem is formulated as

$$\max_{w_{T,i}^{MRC}} \text{SINR}_{i,i}$$

$$\text{s.t. } \mathbb{E}\{||w_{T,i}^{MRC} y_i||^2\} \leq P_r. \quad (3.26)$$

Maximizing (3.25) equals to maximizing $|g_{i,i}^T w_{T,i}^{MRC}|^2$, as the objective function is monotonically increasing w.r.t $|g_{i,i}^T w_{T,i}^{MRC}|$. Also, following similar steps in Lemma 3.1, it’s straightforward to prove that (3.26) is met with equality when $\text{SNR}_{i,i}$ is maximized.
Thus the transmit MRC problem can be reformulated as

\[
\mathbf{w}_{\text{T},i}^{\text{MRC}} = \arg \max_{\mathbf{w}} |\mathbf{g}_{i,i}^T \mathbf{w}|^2 \\
s.t. \ E\{\|\mathbf{w}\mathbf{y}_i\|^2\} = P_r,
\]

which is convex and thus can be solved with the Lagrangian multiplier method. It's Lagrangian can then be written as

\[
L(\mathbf{w}, \lambda) \triangleq \text{tr}(\mathbf{g}_{i,i}^T \mathbf{w} \mathbf{g}_{i,i}^*) - \lambda (\text{tr}(\mathbf{w} R_{y_i} \mathbf{w}^H) - P_r),
\]

where \(R_{y_i} \equiv \mathbb{E}[\mathbf{y}_i \mathbf{y}_i^H] \) and \(\lambda \) is the Lagrangian multiplier. Taking derivative w.r.t. \(\mathbf{w} \) and setting it to zero we have

\[
\frac{\partial L(\mathbf{w}, \lambda)}{\partial \mathbf{w}} = (\mathbf{w}^H \mathbf{g}_{i,i}^* \mathbf{g}_{i,i}^T)^T - \lambda (\mathbf{w}^H R_{y_i})^T = 0.
\]

From above we can obtain that

\[
\mathbf{w}_{\text{T},i}^{\text{MRC}} = \kappa_{\text{MRC},i} \mathbf{g}_{i,i}^*/\|\mathbf{g}_{i,i}\|,
\]

where

\[
\kappa_{\text{MRC},i}^2 = \frac{P_r \|\mathbf{f}_{i,i}\|^2}{\mathbf{f}_{i,i}^H (\mathbf{P}_0 \mathbf{F}_{i} \mathbf{F}_{i}^H + \sigma_i^2 \mathbf{I})} \mathbf{f}_{i,i}.
\]

Finally, using (3.23) and (3.27), we have MRC beam matrix \(\mathbf{W}_{i}^{\text{MRC}} \), for \(i = 1, \cdots, K \), as

\[
\mathbf{W}_{i}^{\text{MRC}} = \kappa_{\text{MRC},i} \mathbf{g}_{i,i}^*/\|\mathbf{g}_{i,i}\| \|\mathbf{f}_{i,i}\|, \quad i = 1, \cdots, K.
\]

3.2.4 Optimization of \(\{\alpha_i, \beta_i\} \) via SDR Approach

With the optimal solution of the two beam matrices \(\mathbf{W}_{i}^{\text{ZF}} \) and \(\mathbf{W}_{i}^{\text{MRC}} \), we now focus on solving OP2 to obtain the optimal weights \(\alpha_i, \beta_i \), to determine \(\mathbf{W}_i \), for \(i = 1, \cdots, K \).
We begin with vectorizing beam matrix W_i for OP$_2$. Define $w_i \triangleq \text{vec}(W_i^H)$. From (3.8), we have

$$w_i = \alpha_i^* w_i^{ZF} + \beta_i^* w_i^{MRC}, \quad i = 1, \cdots, K,$$

(3.29)

where $w_i^{ZF} \triangleq \text{vec}(W_i^{ZF H})$, $w_i^{MRC} \triangleq \text{vec}(W_i^{MRC H})$. We further rewrite the SINR expression in (3.3) w.r.t. the vector form w_i using the property $\text{vec}(ABC) = (A \otimes C^T)\text{vec}(B^T)$, for some matrices A, B and C. A single entry from the first term of interference power I_i in (3.4) can then be written as

$$g_{k,i}^T W_k f_{j,k} = (g_{k,i}^T \otimes f_{j,k}^T)\text{vec}(W_k^T)$$

$$= ((g_{k,i} \otimes f_{j,k})^T)\text{vec}(W_k^T)$$

$$= ((h_{j,i}^{(k)} W_k)^*)^*,$$

where $h_{j,i}^{(j)} \triangleq g_{j,k} \otimes f_{i,j} \in \mathbb{C}^{M^2 \times 1}$ is defined as the compound channel from S_i to D_k through relay cluster C_j. In this way, the second term of I_i in (3.4) can be rewritten as

$$I_{i,S_j} \triangleq \sum_{j=1,j\neq i}^{K} \left| \sum_{k=1}^{K} g_{k,i}^T W_k f_{j,k} \right|^2$$

$$= P_0 \sum_{j=1,j\neq i}^{K} \sum_{k=1}^{K} g_{k,i}^T W_k f_{j,k} \sum_{k'=1}^{K} (g_{k',i} W_{k'} f_{j,k'})^*$$

$$= P_0 \sum_{j=1,j\neq i}^{K} \left(\sum_{k=1}^{K} (h_{j,i}^{(k)} W_k)^* \right) \left(\sum_{k'=1}^{K} (h_{j,i}^{(k')} W_{k'}) \right),$$

where I_{i,S_j} is the power of interference originates from $S_j, j \neq i$. Define $h_{j,i} \triangleq [h_{j,i}^{1 H}, \cdots, h_{j,i}^{K H}]^H \in \mathbb{C}^{KM^2 \times 1}, j \neq i$ as the channel vector from S_j to D_i through all relay clusters. Also define $w \triangleq [w_1^H, \cdots, w_K^H]^H \in \mathbb{C}^{KM^2 \times 1}$ as the vectorized beam-
former of all clusters, we have

\[I_{i,S_j} = P_0 \sum_{j=1,j \neq i}^{K} |h_{j,i}^H w|^2 = w^H (\sum_{j=1,j \neq i}^{K} P_0 h_{j,i} h_{j,i}^H) w. \]

(3.30)

Similarly, for the first term of \(I_i \) in (3.4), let \(I_{i,S_i} \) be the power of interference originates from \(S_i \) itself, we have

\[I_{i,S_i} = P_0 \sum_{j=1,j \neq i}^{K} |g_{j,i}^T W j f_{i,j}|^2 = P_0 \sum_{j=1,j \neq i}^{K} |(h_{j,i}^H w_j)|^2 = w^H P_0 h_{i,i} h_{i,i}^H w, \]

(3.31)

where \(h_{i,i} = [h_{i,i}^1 H, \ldots, h_{i,i}^{i-1} H, 0, h_{i,i}^{i+1} H, \ldots, h_{i,i}^K H]^H \in \mathbb{C}^{KM^2 \times 1} \) denotes the channel vector from \(S_i \) to \(D_i \) via all the relay clusters \(C_j, j \neq i \). Thus \(I_i \) in (3.4) can be rewritten as

\[I_i = I_{i,S_i} + I_{i,S_j} = w^H (\sum_{j=1}^{K} P_0 h_{j,i} h_{j,i}^H) w. \]

(3.32)

Also the desired signal part in (3.3) can be rewritten as

\[P_0 |g_{i,i}^T W_i f_{i,i}|^2 = P_0 |h_{i,i}^i H w_i|^2 = w^H D(A_i) w, \]

(3.33)

where \(A_i \triangleq P_0 h_{i,i}^{(i)} h_{i,i}^{(i)H} \), and \(D(A_i) \) to be block diagonal matrix with the \(i \)th diagonal block being \(A_i \) and the rest 0’s. For the amplified noise term in SNR expression (3.3), note that

\[\text{vec}(g_{j,i}^T W_j) = (g_{j,i} \otimes I)^T \text{vec}(W_j)^T = ((g_{j,i} \otimes I) W_j)^* \]
Using this, the amplified noise term (3.3) can be rewritten as

\[\sigma_v^2 \sum_{j=1}^{K} ||g_{j,i}^T W_j||^2 = \sum_{j=1}^{K} w_j^H (g_{j,i}g_{j,i}^H \otimes I \sigma_v^2) w_j \]
\[= \sum_{j=1}^{K} w_j^H B_{j,i} w_j \]
\[= w^H B_i w, \quad (3.34) \]

where the property \((A \otimes B)(C \otimes D) = AC \otimes BD\) is used to obtain the right hand side of the first equation. Also we define \(B_{j,i} \triangleq (g_{j,i}g_{j,i}^H) \otimes I \sigma_v^2\) as the amplified noise covariance matrix from \(C_j\) to \(D_i\) and \(B_i \triangleq \text{bldg}(B_{1,i}, \cdots, B_{K,i}) \in \mathbb{C}^{KM^2 \times KM^2}\) as the \(K \times K\) block diagonal amplified noise covariance matrix from all \(C_j, j = 1, \cdots, K\) to \(D_i\). In this way, we now can rewrite SINR in (3.3) as

\[\text{SINR}_i = \frac{w^H D(A_i) w}{w^H (\sum_{j=1}^{K} P_0 h_{j,i} h_{j,i}^H) w + w^H B_i w + \sigma_n^2} \]
\[= \frac{w^H D(A_i) w}{w^H C_i w + \sigma_n^2}, \quad (3.35) \]

where \(C_i \triangleq \sum_{j=1}^{K} P_0 h_{j,i} h_{j,i}^H + B_i\). For power constraint (3.6) we have

\[\text{vec}(W_ir_i) = \text{vec}(IW_ir_i) \]
\[= (I \otimes r_i^T)\text{vec}(W_i^T). \]

Thus, power constraint (3.6) can be rewritten as

\[\mathbb{E}\{||W_ir_i||_2^2\} = w_i^H \mathbb{E}\{(I \otimes r_i)(I^H \otimes r_i^H)\} w_i \]
\[= w_i^H (I \otimes \mathbb{E}[r_i r_i^H]) w_i \]
\[= w_i^H \mathbb{E}_i w_i \]
\[\leq P_r, \quad (3.37) \]
where $E_i \triangleq I \otimes \mathbb{E}[r_ir_i^H] = P_o F_i F_i^H + \sigma_n^2 I$.

Define $W_i \triangleq [w_i^{2p}, w_i^{MRC}]$, and $a_i \triangleq [\alpha_i, \beta_i]^H$, for $i = 1, \cdots, K$. From (3.29), it follows that $w_i = W_i a_i$. Similarly, define $W \triangleq \text{bldg}(W_1, \cdots, W_K)$ and $x \triangleq [a_1^H, \cdots, a_K^H]^H$, we have

$$w = \begin{bmatrix} w_1 \\ \vdots \\ w_K \end{bmatrix} = \begin{bmatrix} W_1 a_1 \\ \vdots \\ W_K a_K \end{bmatrix} = \text{bldg}(W_1, \cdots, W_K) \begin{bmatrix} a_1 \\ \vdots \\ a_K \end{bmatrix} = Wx.$$

SINR expression in (3.35) can now be rewritten as a function of x as

$$\text{SINR}_i = \frac{x^H D(\tilde{A}_i)x}{x^H C_i x + \sigma_n^2}$$

(3.38)

where $D(\tilde{A}_i) \triangleq W_i^H D(A_i) W_i$ and $\tilde{C}_i \triangleq W_i^H C_i W_i$. Also, the right hand side of (3.36) can be rewritten as

$$w_i^H E_i w_i = a_i^H \tilde{E}_i a_i = x^H D(\tilde{E}_i)x$$

(3.39)

where $\tilde{E}_i \triangleq W_i^H E_i W_i$, and $D(\tilde{E}_i)$ is defined in the same way as $D(A_i)$. With (3.38) and (3.39), we now reformulate OP$_2$ into the following equivalent problem

$$(\text{OP}_3) \quad \max_{x, \gamma} \quad \gamma$$

s.t. $x^H \left(\frac{1}{\gamma} D(\tilde{A}_i) - \tilde{C}_i \right) x \geq \sigma_n^2$, $i = 1, \cdots, K$

$$x^H D(\tilde{E}_i)x \leq P_r, \ i = 1, \cdots, K.$$
Algorithm 1 Gaussian randomization procedure for OP$_3$

Let L be an integer.

1: For $l = 1, \cdots, L$, generate random vector $\xi_l \in \mathbb{C}^{2K}$ from complex Gaussian distribution $\mathcal{CN}(0, X_{opt})$, and let

$$x_l = \frac{\xi_l}{\max_{1<i<K} \sqrt{\frac{1}{P_r} \xi_l^H D(\tilde{E}_i) \xi_l}}.$$

2: Let

$$x = \arg \max_{x_l, l=1,\cdots,L} \min_{1<i<K} \frac{x^H D(\tilde{A}_i)x}{x^H C_i x + \sigma_n^2}$$

be the approximate solution for OP$_3$

following problem

$$(\text{OP}_4) \max_{X, \gamma} \gamma$$

s.t. $\text{tr} \left[\left(\frac{1}{\gamma} D(\tilde{A}_i) - \tilde{C}_i \right) X \right] \geq \sigma_n^2, \ i = 1, \cdots, K$

$\text{tr}[D(\tilde{E}_i)X] \leq P_r, \ i = 1, \cdots, K$

$X \succeq 0.$

Note that OP$_4$ is not jointly convex w.r.t. X and γ. For a fixed γ, OP$_4$ is an SDP feasibility problem. Thus, we can solve OP$_4$ efficiently using bisection search over γ along with an SDP feasibility problem. The optimal solution X_{opt} may not be rank one in general. If X_{opt} is rank one, then x can be extracted directly from it. Otherwise, we use randomization methods [63] to generate x and finally obtain $\{\alpha_i, \beta_i\}$. The procedure is shown in Algorithm 1. Note that OP$_4$ always has $2K \times 2K$ variables and $2K$ constraints. The problem size does not grow with M.
3.3 Optimization through Direct SDR Approach

To compare with our proposed solution, we consider obtaining \(\{ \mathbf{W}_i \} \) by solving \(\text{OP}_1 \) using the SDR approach directly. Based on SINR expression in (3.35), we can rewrite \(\text{OP}_1 \) w.r.t. \(\mathbf{w} \) into the following problem

\[
\begin{align*}
\max_{\mathbf{w}, \gamma} & \; \gamma \\
\text{s.t.} & \; \mathbf{w}^H \left(\frac{1}{\gamma} \mathbf{D}(\mathbf{A}_i) - \mathbf{C}_i \right) \mathbf{w} \geq \sigma_n^2, \; i = 1, \cdots, K \\
& \; \mathbf{w}^H \mathbf{D}(\mathbf{E}_i) \mathbf{w} \leq P_r, \; i = 1, \cdots, K.
\end{align*}
\]

The above optimization problem is not jointly convex w.r.t. \(\mathbf{w} \) and \(\gamma \). Define \(\mathbf{Y} \triangleq \mathbf{w}\mathbf{w}^H \), and remove the rank-one constraint on \(\mathbf{Y} \), we can relax it into the following problem

\[
\begin{align*}
(\text{OP}_5) \max_{\mathbf{Y}, \gamma} & \; \gamma \\
\text{s.t.} & \; \text{tr} \left[\left(\frac{1}{\gamma} \mathbf{D}(\mathbf{A}_i) - \mathbf{C}_i \right) \mathbf{Y} \right] \geq \sigma_n^2, \; i = 1, \cdots, K \\
& \; \text{tr}[\mathbf{D}(\mathbf{E}_i)\mathbf{Y}] \leq P_r, \; i = 1, \cdots, K; \\
& \; \mathbf{Y} \succeq 0
\end{align*}
\]

where \(\mathbf{D}(\mathbf{E}_i) \) is defined in the same way as \(\mathbf{D}(\mathbf{A}_i) \). Again, the optimal solution \(\mathbf{Y}_{\text{opt}} \) may not be rank one in general, and randomization methods [63] are used to generate \(\mathbf{y} \) and to obtain \(\{ \mathbf{W}_i \} \).

3.4 Complexity Analysis and Comparison

Comparing our proposed solution and the direct SDR approach, we see that both involve solving an SDP problem. The SDP can be solved efficiently using interior-point
methods with standard SDP solvers. However, the difference in problem size results in a significant difference in computational complexity. Based on the complexity analysis of the standard SDP form [64], for the direct SDR approach, the SDP problem OP \(5\) has \((KM^2)^2\) variables and \(2K\) constraints. The complexity to solve the SDP is about \(O(K^5M^8)\). For our proposed solution, OP \(4\) has the variable size of \((2K)^2\) and \(2K\) constraints, with complexity being \(O(K^5)\), which only depends on \(K\) and independent of \(M\).\(^2\) Thus, it is clear that our proposed solution is computationally efficient with significantly lower complexity than the direct SDP approach.

3.5 Simulation Results

We consider a relay network consists of two clusters \((K = 2)\) with 4 relays \((M = 4)\) per cluster, as shown in Fig.3.2. The distance between \(S_i\) and \(D_i\) is set to \(d_{SD} = 1\).

We assume the two S-D pairs are parallel to each other, and relays are located in the middle point of each S-D pair \((d_{SR} = d_{RD} = 0.5d_{SD})\). Let \(d_0\) denote the distance between the two clusters, measured between the center of two relay clusters. Channel vectors \(f_{i,j}\) and \(g_{j,i}\) are assumed to be i.i.d. Gaussian. We use the nominal SNR from source to relay to indicate the average channel strength over this link, defined as

\[
\text{SNR}_{SR} = P_0K_0(d_{SR})^{-3.5}/\sigma_n^2, \quad \text{with } K_0 \text{ being the pathloss constant. We set } P_0/\sigma_n^2 = 1.
\]

Since \(d_{SR} = d_{RD}\), we have \(\text{SNR}_{SR} = \text{SNR}_{RD}\). We set \(\sigma_v^2 = \sigma_n^2\).

\(^2\)The computation of \(W_{ZF}^i\) and \(W_{MRC}^i\) using the closed-forms incurs negligible computational complexity as compared with the SDP complexity.
3.5.1 SINR Performance

First, we compare the minimum SINR performance of our proposed solution with that of the direct SDR approach in OP$_5$. From Figs. 3.3 to 3.5, we plot the minimum SINR vs. SNR$_{SR}$, for $d_0 = 1.0$, 1.6 and 2.2, respectively. We set $M = 4$, and $P_r = MP_0$. Besides the two aforementioned methods, we also plot the optimal objective values of the SDP problems OP$_4$ and OP$_5$, which serve as performance upper bounds for our proposed approach and direct SDR approach, respectively. As can be seen, our proposed solution with structured beam matrix W_i provides a very close performance as compared with the direct SDR approach in all values of d_0. Also, the gap between 2 methods becomes smaller as d_0 becomes bigger. A larger SINR gap is observed at higher SNR$_{SR}$ which is less than 1dB for $d_0 = 1.0$ when the two clusters are relatively
close, while the gap is negligible for \(d_0 = 2.2\) when the two clusters are further apart. Furthermore, both solutions have very small performance loss as compared with their upper bounds.

Next, we compare the SINR performance of multi-antenna relays against separate relays with the same number of total antennas. A 4-antenna relay is then put in the middle of each cluster in Fig. 3.2 instead of the original relays, where each channel is identically distributed with the same pathloss. Fig. 3.6 to 3.8 show the minimum SINR vs. \(\text{SNR}_{SR}\) with the multi-antenna relay, for \(M = 4\), \(P_r = MP_0\), and for \(d_0 = 1.0, 1.6\) and \(2.2\), respectively. The performance of separate relays under the same setting is also plotted here as a comparison. As can be seen from Fig. 3.6 to 3.8, there is about 1 dB gain of using separate relays over centralized multi-antenna relay with the same number of antenna in each plot. The results suggest that heterogeneous relays (each with different channel variance) help improve the relay beamforming performance in a relay interference network.

3.5.2 Power Allocation

Next, based on our structured beam matrix \(W_i\), we study how the relay power is allocated to the two types of beam matrices \(W_{i\text{ZF}}\) and \(W_{i\text{MRC}}\), and how the inter-cluster interference affects the power allocation. Define \(P_i \triangleq \mathbb{E}\{|\|W_i r_i\|\|^2\}\) as the actual power consumption of each relay cluster, and note that \(P_i \leq P_r\). The power used for each type of beam matrix relative to \(P_i\) can be expressed as \(\rho_{i\text{ZF}} \triangleq \frac{\mathbb{E}\{|\|W_{i\text{ZF}} r_i\|\|^2\}}{P_i}\) and \(\rho_{i\text{MRC}} \triangleq \frac{\mathbb{E}\{|\|W_{i\text{MRC}} r_i\|\|^2\}}{P_i}\). It indicates the portion of relay power allocated to the specific type of beam matrix. Figs. 3.9 and 3.10 show relay power allocation \(\{\rho_{i\text{ZF}}, \rho_{i\text{MRC}}\}\) vs.
Figure 3.3: SINR vs. $\overline{\text{SNR}}_{SR}$ ($M = 4, d_0 = 1.0, Pr = MP_0$).

Figure 3.4: SINR vs. $\overline{\text{SNR}}_{SR}$ ($M = 4, d_0 = 1.6, Pr = MP_0$).
Figure 3.5: SINR vs. $\overline{\text{SNR}}_{SR}$ ($M = 4, d_0 = 2.2, Pr = MP_0$).

Figure 3.6: SINR vs. $\overline{\text{SNR}}_{SR}$ ($M = 4, d_0 = 1.0, Pr = MP_0$).
Figure 3.7: SINR vs. $\overline{SNR_{SR}}$ ($M = 4, d_0 = 1.6, Pr = MP_0$).

Figure 3.8: SINR vs. $\overline{SNR_{SR}}$ ($M = 4, d_0 = 2.2, Pr = MP_0$).
We see that as $\overline{\text{SNR}}_{\text{SR}}$ becomes higher, ρ_i^{MRC} decreases, and a larger portion of P_i is allocated to W_i^{ZF}, $i = 1, 2$. This is because the interference channel becomes stronger as well as $\overline{\text{SNR}}_{\text{SR}}$ increases. As a result, the interference becomes stronger and dominant at each destination. Also, we see clearly that with the same $\overline{\text{SNR}}_{\text{SR}}$, when d_0 increases, the interference between two clusters reduces, and more portion of P_i is allocated to W_i^{MRC} to focus on increasing beamforming gain within the cluster. Thus, from our proposed structure of W_i, we can observe clearly the power shift between interference suppression between clusters and beamforming gain maximization within the cluster.

![Power distribution vs. $\overline{\text{SNR}}_{\text{SR}}$ for Cluster 1 ($M = 4$). Top: $d_0 = 1.0$; Middle: $d_0 = 1.6$; Bottom: $d_0 = 2.2$.]
Figure 3.10: Power distribution vs. $\overline{\text{SNR}}_{SR}$ for Cluster 2 ($M = 4$). Top: $d_0 = 1.0$; Middle: $d_0 = 1.6$; Bottom: $d_0 = 2.2$.

3.5.3 Computational Time

Given the similar performance, we also compare the complexity of our solution with that of the direct SDR approach. For simulation settings, we have one Intel Core i7-4770 processor with 3.40 GHz, also the CVX tool box [67] and Matlab 2015 are used here to solve the SDP problem. Only the core processing time of each algorithm, including the solving of SDP and randomization process is calculated here. Fig. 3.11 plots the average computation time of each method versus M. As explained earlier, the computation time in our solution does not depend on M, and thus remains constant as M grows. On the other hand, the computation time of the direct SDR approach grows with M significantly.
Figure 3.11: Average processing time vs. M ($d_0 = 1.0$).

3.6 Summary

In this chapter, we have designed relay beam matrices for the multi-cluster relay interference network, where each cluster causes interference to other clusters. We have proposed a structured beam matrix which is a weighted sum of ZF beam matrix and MRC beam matrix. With the goal of maximizing the minimum SINR, the proposed beam matrix structure simplifies the optimization problem to one over the scalar weights assigned to each type of beam matrices. The optimal beam matrix for each type has been obtained in closed-form. Through transforming the max-min SINR problem, we have applied the SDR approach to obtain the weight to each beam matrix. For our proposed approach, the size of the SDR problem only depends on the number of relay clusters, not the cluster size, and thus is highly computational
efficient. Comparing with the direct SDR approach, our approach offers both similar performance and significant computational complexity reduction. Furthermore, the structured beam matrix clearly revealed the power shift between interference suppression among clusters and beamforming gain maximization within the cluster as the distance among clusters changes.
Chapter 4

Multi-user Relay Beamforming Design for Multi-cluster Relay Interference Networks

In this chapter, we consider the relay beamforming design in a multi-user multi-cluster AF relay network with N S-D pairs and M relays in each cluster. Similar to Chapter 3, we aim at maximizing the minimum SINR among destinations in all clusters subject to a total relay power budget within each cluster.

4.1 System Model

We consider a two-hop relay network with K clusters each serving N peer-to-peer S-D pairs. In each cluster, the N S-D pairs communicate through a set of dedicated M relays, as shown in Fig. 4.1. Each source and destination is equipped with a single antenna. Let S_{ij} and D_{ij} denote the source and destination nodes for the jth S-D pair in cluster i. The M relays in each cluster can be either a multi-antenna relay or multiple relays capable of signal sharing to form virtual multi-antenna. Let $\mathcal{C}_i = \{R_{i1}, \cdots, R_{iM}\}$ denote M relay antennas in the relay cluster for S-D pairs in cluster i, for $i = 1, \cdots, K$. We assume $KN \leq M$. Let $f_{ij,mn}$ denote the complex
channel coefficient between S_{ij} and R_{mn}, and $g_{mn,ij}$ the complex channel coefficient between R_{mn} and D_{ij}.

We again assume that the AF relaying protocol is used, and ignore the direct links between source and destination nodes. In the first phase, the received signal vector at relay cluster C_m is a superposition of signals from all sources in all clusters, given as

$$r_m = \sum_{k=1}^{K} \sum_{n=1}^{N} P_0 f_{kn,m} s_{kn} + v_m, \quad m = 1, \cdots, K,$$

(4.1)

where $f_{kn,m} \triangleq [f_{kn,m1}, \ldots, f_{kn,mM}]^T$ is the channel vector between S_{kn} and relay cluster C_m, s_{kn} is the transmitted signal from S_{kn} with $E[s_{kn}]^2 = 1$ and $E[s_{kn}s_{ij}] = 0, \forall kn \neq ij$, P_o is the common transmit power of all sources, and $v_m \in \mathbb{C}^{M \times 1}$ is the AWGN vector at relay cluster C_m with covariance matrix $\sigma_v^2 I$.

In the second phase, received signal vector r_m is processed with a beam matrix
\(\mathbf{W}_m \in \mathbb{C}^{M \times M} \), and the received signal at \(D_{ij} \) is given by

\[
\begin{align*}
\mathbf{z}_{ij} &= \sum_{m=1}^{k} \mathbf{g}_{m,ij}^T \mathbf{W}_m \mathbf{r}_m + n_{ij} \\
&= \sum_{m=1}^{k} \mathbf{g}_{m,ij}^T \mathbf{W}_m \left(\sum_{k=1}^{K} \sum_{n=1}^{N} \sqrt{P_0} \mathbf{f}_{kn,m} \mathbf{s}_{kn} + \mathbf{v}_m \right) + n_{ij},
\end{align*}
\]

where \(\mathbf{g}_{m,ij} \triangleq [g_{m1,ij}, \ldots, g_{mM,ij}] \) denotes the channel vector between relay cluster \(C_m \) and destination \(D_{ij} \), and \(n_{ij} \) denotes the AWGN at \(D_{ij} \) with variance \(\sigma_n^2 \). Note that the received signal at \(\mathbf{z}_{ij} \) is a superposition of signals received from all relays of all clusters. Only the signal from \(S_{ij} \) to \(D_{ij} \) via its own relay cluster \(C_i \) is regarded as the intended signal for decoding, and all other received signals are considered as interference. Similar to (3.2), due to the presence of multiple relay clusters, the received signal \(\mathbf{z}_{ij} \) can be decomposed into the following components

\[
\begin{align*}
\mathbf{z}_{ij} &= \sqrt{P_0} \mathbf{g}_{i,ij}^T \mathbf{W}_i \mathbf{f}_{ij,i} \mathbf{s}_{ij} + \sum_{m=1, m \neq i}^{K} \sqrt{P_0} \mathbf{g}_{m,ij}^T \mathbf{W}_m \mathbf{f}_{ij,m} \mathbf{s}_{ij} + \sum_{m=1}^{K} \mathbf{g}_{m,ij}^T \mathbf{W}_m \sum_{k,n=1}^{K,N} \sqrt{P_0} \mathbf{f}_{kn,m} \mathbf{s}_{kn} \\
&\quad + \sum_{m=1}^{K} \mathbf{g}_{m,ij}^T \mathbf{W}_m \mathbf{v}_m + n_{ij}, \quad i = 1 \cdots K, \quad j = 1 \cdots N, \quad (4.2)
\end{align*}
\]

where the first term is the intended signal from \(S_{ij} \), the second term is the interference from other relay cluster \(C_m, m \neq i \), that is originated from \(S_{ij} \), the third term is the interference from all sources other than \(S_{ij} \), and the fourth term is the amplified noise forwarded by all relay clusters. Based on (4.2), the receive SINR at \(D_{ij} \) is given by

\[
\text{SINR}_{ij} = \frac{P_0 |\mathbf{g}_{i,ij}^T \mathbf{W}_i \mathbf{f}_{ij,i}|^2}{I_{ij} + \sigma_v^2 \sum_{m=1}^{K} ||\mathbf{g}_{m,ij}^T \mathbf{W}_m||^2 + \sigma_n^2}, \quad (4.3)
\]
where I_{ij} denotes the interference power at D_{ij}, given by

$$I_{ij} \triangleq P_0 E\{ \sum_{m=1, m \neq i}^K g_{m,ij}^T W_m f_{ij,m} s_{ij} \}
+ P_0 E\{ \sum_{m=1}^K g_{m,ij}^T W_m \sum_{k,n=1, kn \neq ij}^N f_{kn,m} s_{kn} \sum_{m'=1, m' \neq i}^K g_{m',ij}^T W_m f_{ij,m'} s_{ij}^* \}
+ P_0 \sum_{k,n=1, kn \neq ij}^N \left(\sum_{m=1}^K g_{m,ij}^T W_m f_{kn,m} \sum_{m=1}^K g_{m,ij}^T W_m f_{kn,m}^* \right) E[s_{ij} s_{ij}^*]
+ P_0 \sum_{k,n=1, kn \neq ij}^N \left(\sum_{m=1}^K g_{m,ij}^T W_m f_{kn,m} \sum_{m'=1, m' \neq i}^K g_{m',ij}^T W_m f_{kn,m'}^* \right) E[s_{kn} s_{kn}^*]
= P_0 \left(\sum_{m=1, m \neq i}^K g_{m,ij}^T W_m f_{ij,m}^2 \sum_{k,n=1, kn \neq ij}^N | g_{m,ij}^T W_m f_{kn,m} |^2 \right). \quad (4.4)$$

Let P_r denote the total relay power budget at each relay cluster. The outputs of C_i should satisfy $E[||W_i r_i||_2^2] \leq P_r$. Our goal is to design $\{W_i\}$ for the relay clusters to maximize the minimum SINR among all destinations in all clusters, while satisfying relay power constraint P_r, given by

$$\max_{\{W_i\}} \min_{i,j} \text{SINR}_{ij} \quad \text{s.t.} \quad E[||W_i r_i||_2^2] \leq P_r, \ i = 1, \cdots, K, j = 1, \cdots, N. \quad (4.5)$$

The above max-min SINR problem can be equivalently expressed as follows

$$(\text{OP}_6) \quad \max_{\{W_i\}, \gamma} \gamma \quad \text{s.t.} \quad E[||W_i r_i||_2^2] \leq P_r,$$

$$\text{SINR}_{ij} \geq \gamma, \ i = 1, \cdots, K, j = 1, \cdots, N. \quad (4.6)$$

OP_6 is non-convex due to the non-convex SINR constraints with w.r.t. $\{W_i\}$ in (4.6). In order to solve OP_6, we follow the similar steps as in Chapter 3 to construct a beam
matrix using a weighted sum of two specific types of beam matrices, and study the optimal weight for each type of beam matrix. Not only can our solution be efficiently obtained with low complexity, but it also reveals how the weights on two types of beam matrices shift as the topology or the size of the relay clusters changes.

4.2 Low Complexity Multi-cluster Relay Beamforming Design

4.2.1 Structured Beam Matrix

In this section, we consider constructing a relay matrix using a weighted sum of two specific types of beam matrices. In the single pair scenario, we use ZF beam matrix W_{ZF}^i to cancel interference and MRC beam matrix W_{MRC}^i to maximize the beamforming gain. Because of the presence of multiple S-D pairs, MRC is no longer applicable. Instead, here we use MMSE beam matrix W_{MMSE}^i. We have

$$W_i = \alpha_i W_{ZF}^i + \beta_i W_{MMSE}^i, \quad i = 1, \ldots, K,$$ (4.7)

where α_i and β_i are the weights for W_{ZF}^i and W_{MMSE}^i, respectively. Specifically, W_{ZF}^i is designed based on ZF criterion to cancel interference from and to the other clusters, while W_{MMSE}^i is designed to minimized the mean square error between the received and transmitted signal within its own cluster without considering interference. In Section 4.2.3, we show that W_{MMSE}^i is identical to W_{MRC}^i in the single S-D pair scenario. Given
the structure of \(W_i \) in (4.7), \(\text{OP}_6 \) is reformulated into the following problem

\[
(\text{OP}_7) \quad \max_{\{\alpha_i, \beta_i\}} \gamma \\
\text{s.t.} \quad \mathbb{E}\{||W_ir_i||_2^2\} \leq P_r, \\
\quad \text{SINR}_{ij} \geq \gamma, \\
\quad W_i = \alpha_i W^{ZF}_{i} + \beta_i W^{\text{MMSE}}_{i}, \quad i = 1, \cdots, K, \quad j = 1, \cdots, N.
\]

Note that since both \(W^{ZF}_i \) and \(W^{\text{MMSE}}_i \) can be determined using their respective design criteria, the remaining parameters to be optimized are only weights \(\{\alpha_i, \beta_i\} \), \(i = 1, \cdots, K \).

4.2.2 ZF Beam Matrix Design

We now design ZF beam matrix \(W^{ZF}_i \) at the relay cluster \(i \) to cancel interference from/to other clusters. The ZF beam matrix is given by the following structure

\[
W^{ZF}_i = W^{ZF}_{T,i} W^{ZF}_{R,i},
\]

where \(W^{ZF}_{R,i} \) and \(W^{ZF}_{T,i} \) are the \(M \times N \) receive ZF beam matrix and transmit ZF beam matrix, respectively. Define \(s_i \triangleq [s_{i1}, \cdots, s_{iN}]^T \) as the signal vector from sources in cluster \(i \) and \(s \triangleq [s_1, \cdots, s_K]^T \) as the signal vector from all sources. Since only \(s_i \) is the desired signal at \(C_i \), the receive ZF beam vector \(W^{ZF}_{R,i} \) should be designed to cancel interference originated from sources in clusters \(j \), for \(j \neq i \). This is given by

\[
W^{ZF}_{R,i} r_i = \sqrt{P_0} s_i \mid v_i = 0, \quad (4.8)
\]

which indicates when \(v_i = 0 \), received signal after the processing of \(W^{ZF}_{R,i} \) should be exactly equal to \(\sqrt{P_0} s_i \). From (4.8), we can see that the interference among sources
S_1, \ldots, S_N in the same cluster is also cancelled. Rewrite received signal vector r_i at relay cluster C_i in (4.1) as

$$r_i = \sqrt{P_0}F_is + v_i,$$

where $F_i \triangleq [f_{i1,i}, f_{i2,i}, \ldots, f_{KN,i}] \in \mathbb{C}^{M \times KN}$ is channel state matrix containing channels from all sources to C_i. ZF constraint in (4.8) is equivalent to

$$W_{ZF}^{R,i}F_i = \Pi_i,$$

where $\Pi_i = [0, \ldots, I, \ldots, 0]$ is a $1 \times K$ block matrix with the ith block being $N \times N$ identity matrix and the elsewhere 0's. Denote the received signal after receive ZF processing by $y_i \triangleq W_{ZF}^{R,i}r_i$. The receive ZF problem can be formulated as

$$W_{ZF}^{R,i} = \arg \max_W \mathbb{E}\{||y_i - \sqrt{P_0}s_i||_2^2\}$$

s.t. $WF_i = \Pi_i$. (4.10)

The objective function in (4.9) can be rewritten as

$$\mathbb{E}\{||y_i - \sqrt{P_0}s_i||_2^2\} = \mathbb{E}\{||W(\sqrt{P_0}F_is + v_i) - \sqrt{P_0}s_i||_2^2\}$$

$$= \mathbb{E}\{||\sqrt{P_0}(WF_i - \Pi_i)s + Wv_i||_2^2\}.$$

Substitute (4.10) into the above equation, we have

$$\mathbb{E}\{||y_i - \sqrt{P_0}s_i||_2^2\} = \mathbb{E}\{||Wv_i||_2^2\}$$

$$= \sigma_v^2 \text{tr}(WW^H)$$

(4.11)

where $\mathbb{E}[v_iv_i^H] = \sigma_v^2I$. The receive ZF problem has a quadratic and convex objective function (4.11), subject to a linear equality constraint (4.10). Thus it is convex and
can be solve by using the Lagrange multiplier method [66]. The Lagrangian for (4.9) can be formulated as

\[
L(w, \lambda) \triangleq \sigma_v^2 \text{tr}(WW^H) - \sum_{n=1}^{N} \sum_{m=1}^{NK} \lambda_{nm}[WF_i - \Pi_i]_{nm}
\]

\[
= \sigma_v^2 \text{tr}(WW^H) - \text{tr}((WF_i - \Pi_i)\Lambda),
\]

where \(\lambda_{nm}\) is the Lagrangian multiplier, and \([\Lambda]_{mn} = \lambda_{nm}\). Following the similar steps of solving \(w_{ZF}^{R_i}\) in Section 3.2.2, we obtain \(W_{ZF}^{R_i}\) as

\[
W_{ZF}^{R_i} = \Pi_i(F_i^H F_i)^{-1}F_i^H.
\]

Note that since \(KN \leq M\), and entries of \(F_i\) are independent channel coefficients, \(F_i^H F_i\) is invertible.

After receive ZF at relays, the transmit ZF beam matrix \(W_{ZF}^{R_{i,j}}\) is then applied. Define received signal vector at destinations in cluster \(i\) as \(z_i \triangleq [z_{i1}, \cdots , z_{iN}]^T\) and at all destinations as \(z = [z_1, \cdots , z_K]^T\). We have

\[
z = G_i W_{ZF}^{R_{i,j}} y_i + n,
\]

where \(G_i \triangleq [g_{i,11}, g_{i,12}, \cdots , g_{i,KN}]^T \in \mathbb{C}^{KN \times M}\) is channel state matrix from \(C_i\) to all destinations, and noise vector \(n \triangleq [n_{11}, \cdots , n_{KN}]^T\). The transmit ZF beamforming is designed to suppress transmit signals to all other clusters, while maximize the intended signal power to receivers in cluster \(i\). Define \(G_{i,j} \triangleq [g_{i,j1}, \cdots , g_{i,jN}]^T \in \mathbb{C}^{N \times M}\) as channel state matrix containing channels from \(C_i\) to destinations in cluster \(j\). We have \(G_i = [G_{i,1}^T, \cdots , G_{i,K}^T]^T\). The transmit ZF beamforming problem can be written
as

\[
W_{T,i}^{ZF} = \arg \max_W \mathbb{E}\{||G_{i,i}Wy_i||^2\} \tag{4.14}
\]

s.t. \(\mathbb{E}\{||Wy_i||^2\} \leq P_r \tag{4.15}\)

\[G_{i,-}Wy_i = 0, \tag{4.16}\]

where \(G_{i,-}\) is the \((K - 1) \times 1\) block matrix obtained from \(G_i\) by removing the \(i\)th block \(G_{i,i}^T\). ZF constraint (4.16) implies that

\[G_iW_{T,i}^{ZF} = \kappa_{ZF,i} \Pi_i^H, \tag{4.17}\]

for some scaler \(\kappa_{ZF,i}\). Similar to Lemma 3.1, it’s easy to prove that the objective function (4.14) is maximized when \(\kappa_{ZF,i}\) is set such that constraint (4.15) is met with equality. Also, the objective function (4.14) can be written in trace form as

\[
\mathbb{E}\{||G_{i,i}Wy_i||^2\} = \mathbb{E}\{||\Pi_iG_iWy_i||^2\}
= \text{tr}(\Pi_iG_iWR_yiW^HG_i^H\Pi_i^H) \tag{4.18}
\]

where \(R_yi \triangleq \mathbb{E}[y_iy_i^H]\), and (4.18) is convex w.r.t. \(W\). Given the linear equality constraints (4.15) and (4.17), the transmit ZF problem is convex and thus can be solved using the Lagrangian multiplier method. It’s Lagrangian can then be written as

\[
L(w, \lambda) \triangleq \text{tr}(\Pi_iG_iWR_yiW^HG_i^H\Pi_i^H) - \sum_{m=1}^{K} \sum_{n=1}^{N} \lambda_{mn}[G_iW_{T,i}^{ZF} - \kappa_{ZF,i} \Pi_i^H]_{mn}
= \text{tr}(\Pi_iG_iWR_yiW^HG_i^H\Pi_i^H) - \text{tr}((G_iW_{T,i}^{ZF} - \kappa_{ZF,i} \Pi_i^H)\Lambda),
\]

where \(\lambda_{mn}\) is the Lagrangian multiplier, and \([\Lambda]_{nm} = \lambda_{mn}\). Following the similar steps
of solving $\mathbf{W}^Z_{T,i}$ in Section 3.2.2, it’s straightforward to obtain that

$$\mathbf{W}^Z_{T,i} = \kappa^Z_{ZF,i} \mathbf{G}^H_i (\mathbf{G}_i \mathbf{G}^H_i)^{-1} \Pi_i^H,$$

(4.19)

with

$$\kappa^2_{ZF,i} = \frac{P_r}{\text{tr}(\Pi_i (\mathbf{G}_i \mathbf{G}^H_i)^{-1} \Pi_i^H \mathbf{R}_{y_i})}, \ i = 1 \cdots K,$$

where $\mathbf{R}_{y_i} \triangleq P_0 \mathbf{I} + \sigma^2 \mathbf{W}^Z_{R,i} \mathbf{W}^Z_{R,i}^H$. From $\mathbf{W}^Z_{R,i}$ in (4.13), we have

$$\kappa^2_{ZF,i} = \frac{P_r}{\text{tr}(\Pi_i (\mathbf{G}_i \mathbf{G}^H_i)^{-1} \Pi_i^H (P_0 \mathbf{I} + \sigma^2 \Pi_i (\mathbf{G}^H_i \mathbf{G}_i)^{-1} \Pi_i^H))}.$$

Thus, using (4.13) and (4.19), we have ZF beam matrix \mathbf{W}^Z_i, for $i = 1, \cdots, K$, as

$$\mathbf{W}^Z_i = \mathbf{W}^Z_{T,i} \mathbf{W}^Z_{R,i} = \kappa^Z_{ZF,i} \mathbf{G}^H_i (\mathbf{G}_i \mathbf{G}^H_i)^{-1} \Pi_i^H \Pi_i (\mathbf{G}^H_i \mathbf{G}_i)^{-1} \mathbf{F}_i^H$$

(4.20)

4.2.3 MMSE Beam Matrix Design

For designing MMSE beam matrix \mathbf{W}^{MMSE}_i, we are only concerned about the signal forwarded by its own relay cluster \mathcal{C}_i. The goal is to minimize the mean square error of received signal at \mathcal{C}_i and at destinations in cluster i, respectively. Thus, we set the MMSE beam matrix structure as

$$\mathbf{W}^{MMSE}_i = \mathbf{W}^{MMSE}_{T,i} \mathbf{W}^{MMSE}_{R,i},$$

where $\mathbf{W}^{MMSE}_{R,i}$ and $\mathbf{W}^{MMSE}_{T,i}$ are the $M \times N$ receive and transmit beam matrix, respectively. The signal received at relay cluster \mathcal{C}_i from its own intended source $S_{ij}, j = 1, \cdots, N$, denoted by $\mathbf{r}_{i,j}$, is given by

$$\mathbf{r}_{i,j} = \sqrt{P_0} \mathbf{F}_{i,j} \mathbf{s}_i + \mathbf{v}_i,$$
where $\mathbf{F}_{i,i} = [f_{i1,i}, \cdots, f_{iN,i}]$ is the channel state matrix containing channels from all sources in cluster i to C_i. Denote the received signal after receive MMSE processing by $\mathbf{y}_{i,i} \triangleq \mathbf{W}_{R,i}^{\text{MMSE}} \mathbf{r}_{i,i}$. Receive beam matrix $\mathbf{W}_{R,i}^{\text{MMSE}}$ is given by the following expression

$$\mathbf{W}_{R,i}^{\text{MMSE}} = \arg \max_{\mathbf{W}} \mathbb{E}\{||\mathbf{y}_{i,i} - \sqrt{P_0}\mathbf{s}_i||^2\}, \quad (4.21)$$

which can simplified into the following trace form

$$\mathbb{E}\{||\mathbf{y}_{i,i} - \sqrt{P_0}\mathbf{s}_i||^2\} = \mathbb{E}\{||\mathbf{W}(\sqrt{P_0}\mathbf{F}_{i,i}\mathbf{s}_i + \mathbf{v}_i) - \sqrt{P_0}\mathbf{s}_i||^2\}
\quad = \text{tr}(\mathbf{W}(\sqrt{P_0}\mathbf{F}_{i,i}\mathbf{s}_i + \mathbf{v}_i) - \sqrt{P_0}\mathbf{s}_i)(\mathbf{W}(\sqrt{P_0}\mathbf{F}_{i,i}\mathbf{s}_i + \mathbf{v}_i) - \sqrt{P_0}\mathbf{s}_i)^H)
\quad = \text{tr}(P_0\mathbf{W}\mathbf{F}_{i,i}\mathbf{F}_{i,i}^H - P_0\mathbf{W}\mathbf{F}_{i,i}^H + \sigma_v^2\mathbf{W} \mathbf{W}^H - P_0\mathbf{F}_{i,i}^H\mathbf{W}^H + P_0\mathbf{I}).$$

Since (4.21) is an unconstrained quadratic maximization problem, it can be solved by taking the first derivative w.r.t \mathbf{W} and set it to zero, it is straightforward to obtain $\mathbf{W}_{R,i}^{\text{MMSE}}$ as

$$\mathbf{W}_{R,i}^{\text{MMSE}} = P_0\mathbf{F}_{i,i}^H(P_0\mathbf{F}_{i,i}\mathbf{F}_{i,i}^H + \sigma_v^2\mathbf{I})^{-1}. \quad (4.22)$$

After applying $\mathbf{W}_{R,i}^{\text{MMSE}}$ to the actual received signal vector \mathbf{r}_i, we have

$$\mathbf{y}_i = \mathbf{W}_{R,i}^{\text{MMSE}} \mathbf{r}_i = P_0\mathbf{F}_{i,i}^H(P_0\mathbf{F}_{i,i}\mathbf{F}_{i,i}^H + \sigma_v^2\mathbf{I})^{-1}(\sqrt{P_0}\mathbf{F}_{i,i}\mathbf{s} + \mathbf{v}_i). \quad (4.23)$$

Then the transmit beam matrix $\mathbf{W}_{T,i}^{\text{MMSE}}$ is applied. The received signal at all destinations in C_i without considering interference from relays in other cluster is given by

$$\mathbf{z}_{i,i} = \mathbf{G}_{i,i} \mathbf{W}_{T,i}^{\text{MMSE}} \mathbf{y}_i + \mathbf{n}_i,$$

where $\mathbf{G}_{i,i} = [g_{i1,i}, \cdots, g_{iN,i}]^T$ is the channel state matrix containing channels from C_i to all the destinations in cluster i, and $\mathbf{n}_i \triangleq [n_{i1}, \cdots, n_{iN}]^T$. The transmit MMSE
beamforming problem can be formulated as

$$\{W_{MMSE}^T, \kappa_{MMSE, i}\} = \arg \min_{W, \kappa} \mathbb{E}\{||y_i - \kappa^{-1}z_{i, i}||^2\}$$

s.t. $\mathbb{E}\{||Wy_i||^2\} = P_r,$ \hspace{1cm} (4.24)

where $\kappa_{MMSE, i}$ can be viewed as an automatic gain control [31]; it can ensure that the MSE is minimized while fulfilling the power constraint. The above optimization question has a convex objective function and a convex equality constraint, thus can be solved using Lagrangian multiplier method. The Lagrangian associated with the it can be constructed as:

$$L(W, \kappa, \lambda) = \mathbb{E}\{||y_i - \kappa^{-1}z_{i, i}||^2\} + \lambda \text{tr}(WR_y, W^H - P_r), \hspace{1cm} (4.25)$$

where $\lambda \in \mathbb{R}$ is the Lagrangian multiplier. The cost function can then be rewritten into trace form

$$\mathbb{E}\{||y_i - \kappa^{-1}z_{i, i}||^2\} = \mathbb{E}\{\text{tr}\left(\left(y_i - \kappa^{-1}G_{i, i}Wy_i - \kappa^{-1}n_i\right)\left(y_i - \kappa^{-1}G_{i, i}Wy_i - \kappa^{-1}n_i\right)^H\right)\}$$

$$= \text{tr}(R_{y_i}) - \kappa^{-1}\text{tr}(R_{y_i}W^HG^H_{i, i}) - \kappa^{-1}\text{tr}(G_{i, i}WR_{y_i}) + \kappa^{-2}\text{tr}(G_{i, i}WR_{y_i}W^HG^H_{i, i} + \sigma_n^2I), \hspace{1cm} (4.26)$$

where $R_{y_i} \triangleq \mathbb{E}[y_i y_i^H]$. By taking the first derivative of (4.25) w.r.t. W and κ, respectively, and setting them to zero, we have

$$\frac{\partial L(W, \kappa, \lambda)}{\partial W} = -\kappa^{-1}G^T_{i, i}R_{y_i} + \kappa^{-2}(G^T_{i, i}G^*_{i, i}W^*R^T_{y_i}) + \lambda(W^*R^T_{y_i}) = 0 \hspace{1cm} (4.27)$$

$$\frac{\partial L(W, \kappa, \lambda)}{\partial \kappa} = \kappa\text{tr}(\text{Re}(G_{i, i}WR_{y_i})) - \text{tr}(G_{i, i}WR_{y_i}W^HG^H_{i, i} + \sigma_n^2I) = 0. \hspace{1cm} (4.28)$$
From (4.27), we obtain the structure of W

$$W = \kappa (G_{i,i}^H G_{i,i} + \lambda \kappa^2 I)^{-1} G_{i,i}^H$$

$$= \kappa \tilde{W}, \quad (4.29)$$

where $\tilde{W} \triangleq (G_{i,i}^H G_{i,i} + \lambda \kappa^2 I)^{-1} G_{i,i}^H$. Substitute (4.29) into power constraint (4.24), we have

$$\kappa = \frac{P_r}{\text{tr}(WR_yi \tilde{W}^H)}.$$

Note that $\text{tr}(\text{Re}(G_{i,i} \tilde{W}R_yi)) = \text{tr}(G_{i,i} \tilde{W}R_yi)$ since $G_{i,i} \tilde{W}R_yi$ is hermitian. And also from (4.29), we have $\text{tr}(G_{i,i} \tilde{W}R_yi) = \text{tr}(\tilde{W}^H(G_{i,i}^H G_{i,i} + \lambda \kappa^2 I)\tilde{W}R_yi)$. Substitute them together into (4.28), we have

$$\text{tr}(\tilde{W}^H(G_{i,i}^H G_{i,i} + \lambda \kappa^2 I)\tilde{W}R_yi) - \text{tr}(G_{i,i} \tilde{W}R_yi \tilde{W}^H G_{i,i}^H + \sigma_n^2 I) = 0,$$

$$\text{tr}(\lambda \kappa^2 I \tilde{W}R_yi) - \sigma_n^2 N = 0,$$

$$\lambda \kappa^2 = \frac{\sigma_n^2 N}{P_r}.$$

Therefore we have our transmit MMSE matrix as

$$W_{\text{MMSE}}^{T,i} = \kappa_{\text{MMSE},i}^{-1} G_{i,i}^H \quad (4.30)$$

$$\kappa_{\text{MMSE},i}^2 = \frac{P_r}{\text{tr}(J_i^{-1}G_{i,i}^H R_yi G_{i,i})},$$

where

$$J_i \triangleq G_{i,i}^H G_{i,i} + \frac{\sigma_n^2 N}{P_r} I,$$

$$R_yi \triangleq \mathbb{E}[y_i y_i^H] = W_{R,i}^{\text{MMSE}} (P_0 F_i F_i^H + \sigma_v^2 I) W_{R,i}^{\text{MMSE} H}.$$
Using (4.22) and (4.30), we have MMSE beam matrix W_{i}^{MMSE}, for $i = 1, \cdots, K$, as
\[
W_{i}^{\text{MMSE}} = W_{T,i}^{\text{MMSE}} W_{R,i}^{\text{MMSE}}
\]
\[
= \kappa_{\text{MMSE},i} P_{0} J_{i}^{-1} G_{i,i}^{H} F_{i,i}^{H} (P_{0} F_{i,i} F_{i,i}^{H} + \sigma_{v}^{2} I)^{-1}.
\]

(4.31)

4.2.3.1 Evidence of W_{i}^{MMSE} and W_{i}^{MRC} for $N = 1$

Next, we show that in the single S-D pair scenario, W_{i}^{MMSE} is equivalent to W_{i}^{MRC}. Thus our design in the multiple S-D pairs per cluster case for $N = 1$ is consistent with the design in Chapter 3.

Proposition 4.1. For $N = 1$, the MMSE beamformer of each cluster can be expressed as
\[
W_{i}^{\text{MMSE}} = w_{T,i}^{\text{MMSE}} w_{R,i}^{\text{MMSE}H}
\]
\[
= \kappa_{\text{MMSE},i} P_{0} J_{i}^{-1} g_{i,i}^{*} f_{i,i}^{H} (P_{0} f_{i,i} f_{i,i}^{H} + \sigma_{v}^{2} I)^{-1},
\]

where $f_{i,i}$ is the channel vector between S_{j} and relay cluster C_{i}, and $g_{i,i}$ denotes the channel vector between relay cluster C_{j} and destination D_{i}. Also for $\kappa_{\text{MMSE},i}$ we have
\[
\kappa_{\text{MMSE},i} = \sqrt{\frac{P_{r}}{\text{tr}(J_{i}^{-1} g_{i,i}^{*} g_{i,i}^{T} R_{y,i} g_{i,i}^{T})}},
\]

where $J_{i} \triangleq g_{i,i}^{*} g_{i,i}^{T} + \sigma_{v}^{2} I$ and $R_{y,i} \triangleq \mathbb{E}[y_{i} y_{i}^{*}]$. y_{i} denotes the signal after the process of $w_{R,i}^{\text{MMSE}}$.

And W_{i}^{MMSE} here is exactly the same with W_{i}^{MRC} which is given in (3.28)
\[
W_{i}^{\text{MRC}} = \kappa_{\text{MRC},i} \frac{g_{i,i}^{*}}{||g_{i,i}||} \frac{f_{i,i}^{H}}{||f_{i,i}||}, \quad i = 1, \cdots, K.
\]

Proof. See Appendix 4.6.1.
4.2.4 Optimization of \(\{\alpha_i, \beta_i\} \) via SDR Approach

With the optimal solution of the two beam matrices \(W_{ZF}^i \) and \(W_{MMSE}^i \), we now focus on solving OP7 to obtain the optimal weights \(\alpha_i, \beta_i \), to determine \(W_i \), for \(i = 1, \cdots, K \).

Following similar steps of vectorization in 3.2.4, we have

\[
\mathbf{w}_i = \alpha_i^* \mathbf{w}_{ZF}^i + \beta_i^* \mathbf{w}_{MMSE}^i \quad i = 1, \cdots, K,
\]

where \(\mathbf{w}_i \triangleq \text{vec}(\mathbf{W}_i^H) \), \(\mathbf{w}_{ZF}^i \triangleq \text{vec}(\mathbf{W}_{ZF}^i) \) and \(\mathbf{w}_{MMSE}^i \triangleq \text{vec}(\mathbf{W}_{MMSE}^i) \). Define \(h_{kn,ij}^{(m)} \triangleq g_{m,ij} \otimes f_{kn,m} \in \mathbb{C}^{M^2 \times 1} \) as the compound channel from \(S_{kn} \) to \(D_{ij} \) through relay cluster \(C_m \). Using the same vectorization techniques in Section 3.2.4, we further rewrite SINR expression (4.3) w.r.t \(\mathbf{w}_i \). The second term of \(I_{ij} \) in (4.4) can be rewritten as

\[
I_{ij,S_{kn}} = P_0 \sum_{k,n=1}^{K} \sum_{kn \neq ij}^{N} \left| \sum_{m=1}^{K} g_{m,ij}^T \mathbf{W}_m f_{kn,m} \right|^2
\]

\[
= P_0 \sum_{k,n=1}^{K} \sum_{kn \neq ij}^{N} \left(\sum_{m=1}^{K} g_{m,ij}^T \mathbf{W}_m f_{kn,m} \sum_{m'=1}^{K} (g_{m',ij}^T \mathbf{W}_m f_{kn,m'})^* \right)
\]

\[
= P_0 \sum_{k,n=1}^{K} \sum_{kn \neq ij}^{N} \left(\sum_{m=1}^{K} (h_{kn,ij}^{(m)} H \mathbf{w}_m)^* \sum_{m'=1}^{K} (h_{kn,ij}^{(m')} H \mathbf{w}_{m'}) \right),
\]

where \(I_{ij,S_{kn}} \) is the power of interference originates from \(S_{kn}, kn \neq ij \). Define \(h_{kn,ij} \triangleq [h_{kn,ij}^{(1)} H, \cdots, h_{kn,ij}^{(K)} H] H \in \mathbb{C}^{KM^2 \times 1} \) as the channel vector from \(S_{kn} \) to \(D_{ij} \) through all relay clusters. Also define \(\mathbf{w} \triangleq [\mathbf{w}_1^H, \cdots, \mathbf{w}_K^H] H \in \mathbb{C}^{KM^2 \times 1} \) as the vectorized beamformer of all clusters, we have

\[
I_{ij,S_{kn}} = P_0 \sum_{k,n=1}^{K} \sum_{kn \neq ij}^{N} \left| h_{kn,ij}^H \mathbf{w} \right|^2
\]

\[
= \mathbf{w}^H \left(\sum_{k,n=1}^{K} \sum_{kn \neq ij}^{N} P_0 h_{kn,ij} h_{kn,ij}^H \right) \mathbf{w}. \tag{4.33}
\]
Similarly, for the first term of I_{ij} in (4.4), let $I_{ij,S_{ij}}$ be the power of interference originates from S_{ij} itself. We have

$$I_{ij,S_{ij}} \triangleq P_0 \left| \sum_{m=1, m \neq i}^{K} g_{m,ij}^T W_m f_{ij,m} \right|^2$$

$$= P_0 \left| \sum_{m=1, m \neq i}^{K} (h_{ij,ij}^{(m)} w_m) \right|^2$$

$$= w^H P_0 h_{ij,ij} h_{ij,ij}^H w,$$ \hspace{1cm} (4.34)

where $h_{ij,ij} = [h_{ij,ij}^{(1)} H, \ldots, h_{ij,ij}^{(i-1)} H, 0, h_{ij,ij}^{(i+1)} H, \ldots, h_{ij,ij}^{(K)} H]^H \in \mathbb{C}^{K \times 1}$ denotes the channel vector from S_{ij} to D_{ij} via all the relay clusters $C_j, j \neq i$. Thus I_{ij} in (4.4) can be rewritten as

$$I_{ij} = I_{ij,S_{ij}} + I_{ij,S_{kn}}$$

$$= w^H (\sum_{k=1}^{K} \sum_{n=1}^{N} P_0 h_{kn,ij} h_{kn,ij}^H) w.$$ \hspace{1cm} (4.35)

Perform the similar vectorization process on the desired signal part in (4.3)

$$P_0 \left| g_{i,ij}^T W_i f_{ij,i} \right|^2 = P_0 \left| h_{ij,ij}^{(i)} w_i \right|^2$$

$$= w^H D(A_{ij}) w,$$ \hspace{1cm} (4.36)

where $A_{ij} \triangleq P_0 h_{ij,ij}^{(i)} h_{ij,ij}^{(i)H}$, and $D(A_{ij})$ is the block diagonal matrix with the ith diagonal block being A_{ij} and the rest 0’s. For the amplified noise term in SINR expression (4.3), we have

$$\sigma_v^2 \sum_{m=1}^{K} \|g_{m,ij}^T W_m\|^2 = \sigma_v^2 \sum_{m=1}^{K} w_m^H B_{m,ij} w_m$$

$$= w^H B_{ij} w,$$ \hspace{1cm} (4.37)

where $B_{m,ij} \triangleq (g_{m,ij} g_{m,ij}^H) \otimes I$ is the amplified noise covariance matrix from C_m to D_{ij} and $B_{ij} = \sigma_v^2 \text{diag}(B_{1,ij}, \ldots, B_{K,ij}) \in \mathbb{C}^{KM^2 \times KM^2}$ is the $K \times K$ block diagonal
amplified noise matrix from all $C_{j,j} = 1, \cdots, K$ to D_{ij}. In this way, we now can rewrite SINR in (4.3) as

$$\text{SINR}_{ij} = \frac{w^H D(A_{ij}) w}{w^H (\sum_{k=1}^K \sum_{n=1}^N P_0 h_{kn,ij} h_{kn,ij}^H) w + w^H B_{ij} w + \sigma_n^2} = \frac{w^H D(A_{ij}) w}{w^H C_{ij} w + \sigma_n^2},$$ \hspace{1cm} (4.38)

where $C_{ij} \triangleq \sum_{k=1}^K \sum_{n=1}^N P_0 h_{kn,ij} h_{kn,ij}^H + B_{ij}$. Similarly, power constraint (4.5) can be rewritten as

$$w_i^H E_i w_i \leq P_r, \ i = 1, \cdots, K \hspace{1cm} (4.39)$$

where $E_i \triangleq I \otimes \mathbb{E}[r_i r_i^H] = P_o F_i F_i^H + \sigma_i^2 I$.

Define $\tilde{W}_i \triangleq [w_i^{2p}, w_i^{\text{MMSE}}]$, and $a_i \triangleq [\alpha_i, \beta_i]^H$, for $i = 1, \cdots, K$. From (4.32), it follows that $w_i = \tilde{W}_i a_i$. Similarly, define $\tilde{W} \triangleq \text{bldg}(\tilde{W}_1, \cdots, \tilde{W}_K)$ and $x \triangleq [a_1^H, \cdots, a_K^H]^H$, we have $w = \tilde{W} x$. SINR expression in (4.38) can now be rewritten as a function of x as

$$\text{SINR}_{ij} = \frac{x^H D(\tilde{A}_{ij}) x}{x^H \tilde{C}_{ij} x + \sigma_n^2},$$ \hspace{1cm} (4.40)

where $D(\tilde{A}_i) \triangleq \tilde{W}_i^H D(A_i) \tilde{W}_i$ and $\tilde{C}_{ij} \triangleq \tilde{W}_i^H C_{ij} \tilde{W}_i$. Also, the left hand side of (4.39) can be rewritten as

$$w_i^H E_i w_i = a_i^H \tilde{E}_i a_i = x^H D(\tilde{E}_i) x \hspace{1cm} (4.41)$$

where $\tilde{E}_i \triangleq \tilde{W}_i^H E_i \tilde{W}_i$, and $D(\tilde{E}_i)$ is defined in as a block diagonal matrix with ith diagonal block being \tilde{E}_i and the rest 0’s. With (4.40) and (4.41), we now reformulate
OP\textsubscript{7} into the following equivalent problem

\[\text{(OP\textsubscript{8}) } \max_{x, \gamma} \gamma \]
\[\text{s.t. } x^H \left(\frac{1}{\gamma} D(\tilde{A}_{i,j}) - \tilde{C}_{i,j} \right) x \geq \sigma_n^2, \quad i = 1, \cdots, K, \quad j = 1, \cdots, N,\]
\[x^H D(\tilde{E}_i)x \leq P_r, \quad i = 1, \cdots, K.\]

Define $X \triangleq xx^H$, and remove the rank-one constraint on X, we relax OP\textsubscript{8} into the following problem

\[\text{(OP\textsubscript{9}) } \max_{X, \gamma} \gamma \]
\[\text{s.t. } \text{tr} \left[\left(\frac{1}{\gamma} D(\tilde{A}_{i,j}) - \tilde{C}_{i,j} \right) X \right] \geq \sigma_n^2, \quad i = 1, \cdots, K, \quad j = 1, \cdots, N,\]
\[\text{tr}[D(\tilde{E}_i)X] \leq P_r, \quad i = 1, \cdots, K;\]
\[X \succeq 0.\]

Note that OP\textsubscript{9} is not jointly convex w.r.t. X and γ. Similar to OP\textsubscript{4}, it can also be solved by performing bi-section search on γ and transforming it into a feasibility problem. Similar randomization method used in Algorithm 1 is needed if the optimal solution X_{opt} is not rank one. Compared with OP\textsubscript{4} in single pair scenario, we now end up with a similar SDP problem with the same problem size of $2K \times 2K$, which is not growing with M. Also now we have KN SINR constraints instead of just K, and the number of power constraint remains the same.

As a comparison, we also consider the direct SDR approach to obtain \(\{W_i\}\).

Rewrite OP\textsubscript{6} w.r.t w using SINR expression in (4.38), and then relax it into SDP
form

$$\begin{align*}
(\text{OP}_{10}) \max_{\gamma \in \mathcal{Y}} & \gamma \\
\text{s.t.} & \text{tr} \left[\left(\frac{1}{\gamma} \mathbf{D}(\mathbf{A}_{ij}) - \mathbf{C}_{ij} \right) \mathbf{Y} \right] \geq \sigma_n^2, \ i = 1, \ldots, K, \ j = 1, \ldots, N \\
& \text{tr}[\mathbf{D}(\mathbf{E}_i)\mathbf{Y}] \leq P_r, \ i = 1, \ldots, K \\
& \mathbf{Y} \succeq 0
\end{align*}$$

where \(\mathbf{Y} \triangleq \mathbf{w}\mathbf{w}^H \) and \(\mathbf{D}(\mathbf{E}_i) \) is defined in the same way as \(\mathbf{D}(\tilde{\mathbf{E}}_i) \). Solving \(\text{OP}_{10} \) follows the exact same way of solving \(\text{OP}_9 \).

4.3 Complexity Analysis and Comparison

Comparing our proposed solution and the direct SDR approach, the former one still has the obvious advantage in computation complexity in multiple S-D pair scenario. Based on the complexity analysis of the standard SDP form [64], for the direct SDR approach, the SDP problem \(\text{OP}_{10} \) has \((KM^2)^2\) variables and \(K(N + 1)\) constraints. The complexity to solve the SDP is about \(\mathcal{O}(K^5M^8N)\). For our proposed solution, \(\text{OP}_9 \) has the variable size of \((2K)^2\) and \(K(N + 1)\) constraints, with complexity being \(\mathcal{O}(K^5N)\), which is also independent of \(M\). By incorporating structural information \(\mathbf{W}\) into constraints, \(\text{OP}_9 \) reduces its problem size and results in significantly lower complexity than the direct SDP approach.

4.4 Simulation Results

For the multiple S-D pair scenario, we consider a relay network consists of two clusters \((K = 2)\) with 8 relays \((M = 8)\) and 2 S-D pairs \((N = 2)\) per cluster, as shown in
in the middle point of each S-D pair \((d_{SR} = d_{RD} = 0.5d_{SD}, d_{SD} = 1)\). Let \(d_0\) denote the distance between the two clusters, measured between the centers of the two relay clusters. Channel vectors \(f_{ij,k}\) and \(g_{k,ij}\) are assumed to be i.i.d. Gaussian. Nominal SNR from source to relay are used to indicate the average channel strength over this link, defined as \(\overline{\text{SNR}}_{SR} = P_0K_0(d_{SR})^{-3.5}/\sigma_n^2\), with \(K_0\) being the pathloss constant. We set \(P_0/\sigma_n^2 = 1\). Since \(d_{SR} = d_{RD}\), we have \(\overline{\text{SNR}}_{SR} = \overline{\text{SNR}}_{RD}\). We set \(\sigma_v^2 = \sigma_n^2\).

4.4.1 SINR Performance

Again, we first compare the minimum SINR performance of our proposed solution with that of the direct SDR approach in OP_{10}. From Figs. 4.3 and 4.5, we plot SINR vs. \(\overline{\text{SNR}}_{SR}\) with \(d_0 = 2.2\), for \(M = 4, 6\) and \(8\), respectively. In each figure, the
central 4, 6 and 8 relays shown in Fig. 4.2 are chosen, respectively. We set $P_r = M P_0$.

Optimal objective values of the SDP problems OP$_9$ and OP$_{10}$ are also plotted here, which serve as performance upper bounds for our proposed approach and direct SDR approach, respectively. Additionally, we exam SINR performance of W_{i}^{ZF} and W_{i}^{MMSE} in each setup when each cluster uses full relay power on ZF ($\alpha_i = 1, \beta_i = 0$) or MMSE ($\alpha_i = 0, \beta_i = 1$).

As can be seen from Figs. 4.3 to 4.5, our proposed solution provides similar SINR performance with that of direct approach, especially with larger number of M. The gap between two methods becomes bigger when M becomes smaller. A larger SINR gap is observed at higher \overline{SNR}_{SR} which is about 3dB for $M = 4$, while the gap decreases to 1.2dB for $M = 8$. Further we can see that the performance of W_{i}^{ZF} increases considerably with bigger M, from about 12dB lower than the direct
Figure 4.4: SINR vs. $\overline{\text{SNR}}_{\text{SR}}$ ($M = 6, d_0 = 2.2, Pr = MP_0$).

Figure 4.5: SINR vs. $\overline{\text{SNR}}_{\text{SR}}$ ($M = 8, d_0 = 2.2, Pr = MP_0$).
approach when $M = 4$, to just 2dB below the direct approach at $M = 8$. This is because when $M = NK = 4$, there is no extra degree of freedom in W_{i}^{ZP} to improve the received signal power, as can be seen in ZF constraints in (4.10) and (4.16). When M increases, extra degrees of freedom in beamformer allows us to focus signal power on the direction of the intended receivers, which results in a better SINR performance.

Next we compare the SINR performance of the 2 approaches with different d_0. In Figs. 4.6 to 4.7, we plot the minimum SINR vs. $\overline{\text{SNR}}_{SR}$, for $d_0 = 1.6$ and 1.0, respectively. We set $M = 4$ by using the central 4 relays in each cluster (same as Fig 3.2), and $P_r = MP_0$. As can be seen from Figs. 4.3, 4.6 and 4.7, the gap between proposed solution and direct approach are bigger comparing with single S-D pair scenario in Figs. 3.3 to 3.5. This is because of the lack of degree of freedom in W_{i}^{ZP} when $M = NK = 4$. In addition, the gap between two methods becomes larger as d_0 becomes smaller. A larger SINR gap is observed at higher $\overline{\text{SNR}}_{SR}$ which is about 6dB for $d_0 = 1.0$ when the two clusters are relatively close, while the gap decreases to 3dB for $d_0 = 2.2$ when the two clusters are further apart. Furthermore, we can see that in these three figures the performance of W_{i}^{MMSE} increases with increasing d_0. This is because the inter-cluster interference reduces with longer distance between cells, thus SINR performance relies more on beamforming gain maximization when d_0 is relatively large.

4.4.2 Power Allocation

Next, based on our structured beam matrix W_i, we study how the relay power is allocated to the two types of beam matrices W_{i}^{ZP} and W_{i}^{MMSE}, and how the inter-
Figure 4.6: SINR vs. $\overline{\text{SNR}}_{SR}$ ($M = 4, d_0 = 1.6, Pr = MP_0$).

Figure 4.7: SINR vs. $\overline{\text{SNR}}_{SR}$ ($M = 4, d_0 = 1.0, Pr = MP_0$).
cluster interference affects the power allocation. Similar definitions used in Section 3.5.2 are also adopted here with ρ^Z_{i} and $\rho^M_{i} \triangleq \mathbb{E}[^{\dagger}j \beta_i W_{M_{i}, r_i} ||^2]$ indicating the portion of actual relay power P_i allocated to the specific type of beam matrix. Figs. 4.8 and 4.9 show relay power allocation $\{\rho^Z_{i}, \rho^M_{i}\}$ vs. SNR_{SR} at different distance $d_0 = 1.0, 1.6, 2.2$ and with $M = 4$, for relay clusters 1 and 2, respectively. Similar trends with single S-D pair scenario are observed here. As SNR_{SR} becomes higher, ρ^M_{i} decreases, and a larger portion of P_i is allocated to $W^Z_{i}, i = 1, 2$. This is because the interference channel becomes stronger as well as SNR_{SR} increases. As a result, the interference becomes stronger and dominant at each destination. Also, we see clearly that with the same SNR_{SR}, when d_0 increases, the interference between two clusters reduces, and a bigger portion of P_i is allocated to W^M_{i} to focus on increasing beamforming gain within the cluster.

Figs. 4.10 and 4.11 illustrate relay power allocation $\{\rho^Z_{i}, \rho^M_{i}\}$ vs. SNR_{SR} with different relay number $M = 4, 6, 8$ with $d_0 = 1.0$, for relay clusters 1 and 2, respectively. As can be seen from these figures, with the same SNR_{SR}, when M increases, the interference between two clusters becomes stronger, and a bigger portion of P_i is allocated to $W^Z_{i}, i = 1, 2$, to focus on interference cancelation. Thus, from our proposed structure of W_i, we can observe clearly the power shift between interference suppression between clusters and beamforming gain maximization within the cluster.

4.4.3 Computation Time

Given the performance and power distribution, we also compare the complexity of our solution with that of the direct SDR approach. Similar settings in Chapter 3.5.3 are
Figure 4.8: Power distribution vs. $\overline{\text{SNR}}_{SR}$ for Cluster 1 ($M = 4$). Top: $d_0 = 1.0$; Middle: $d_0 = 1.6$; Bottom: $d_0 = 2.2$.

Figure 4.9: Power distribution vs. $\overline{\text{SNR}}_{SR}$ for Cluster 2 ($M = 4$). Top: $d_0 = 1.0$; Middle: $d_0 = 1.6$; Bottom: $d_0 = 2.2$.
Figure 4.10: Power distribution vs. $\overline{\text{SNR}}_{\text{SR}}$ for Cluster 1 ($d_0 = 1.0$). Top: $M = 4$; Middle: $M = 6$; Bottom: $M = 8$.

Figure 4.11: Power distribution vs. $\overline{\text{SNR}}_{\text{SR}}$ for Cluster 2 ($d_0 = 1.0$). Top: $M = 4$; Middle: $M = 6$; Bottom: $M = 8$.
also used here. Fig. 4.12 plots the average computation time of each method versus M. As explained earlier, the computation time in our solution does not depend on M, and thus remains constant as M grows. On the other hand, the computation time of the direct SDR approach grows with M significantly.

![Average processing time vs. M ($d_0 = 1.0$).](image)

Figure 4.12: Average processing time vs. M ($d_0 = 1.0$).

4.5 Summary

In this chapter, we have designed relay beam matrices for the multi-user multi-cluster relay interference network, where each cluster causes interference to others. We have proposed a structured beam matrix which is a weighted sum of ZF beam matrix and MMSE beam matrix. With the goal of maximizing the minimum SINR, the proposed beam matrix structure simplifies the optimization problem to one over the scalar weights assigned to each type of beam matrices. The optimal beam matrix
for each type has been obtained in closed-form. Through transforming the max-min
SINR problem, we have applied the SDR approach to obtain the weight to each beam
matrix. For our proposed approach, the size of the SDR problem only depends on
the number of relay clusters, not the cluster size, and thus is highly computational
efficient. Simulations show that our proposed solution provides similar SINR per-
formance with that of direct approach, and the performance gap decreases as the
number of relays increases. Additionally, proposed approach has significant lower
computational complexity. Furthermore, the structured beam matrix clearly revealed
the power shift between interference suppression among clusters and beamforming
gain maximization within the cluster as the distance among clusters or size of clusters
changes.

4.6 Appendices

4.6.1 Proof of Proposition 4.1

Proof. We show the solution in each case below.

1) For receive MMSE vector $\mathbf{w}_{R,i}^{MMSE}$: The signal received at relay cluster C_i from
its own intended source S_i, denoted by $r_{i,i}$, is given by

$$r_{i,i} = \sqrt{P_0} f_{i,i} s_i + v_i.$$

The receive MMSE problem can then be formulated as

$$\mathbf{w}_{R,i}^{MMSE} = \arg \max_{\mathbf{w}} \mathbb{E}\{||y_{i,i} - \sqrt{P_0} s_i||_2^2\}, \quad (4.42)$$

where $y_{i,i} = \mathbf{w}_{R,i}^{MMSEH} r_{i,i}$. Follow the same steps of solving (4.21), we obtain $\mathbf{w}_{R,i}^{MMSE}$ as

$$\mathbf{w}_{R,i}^{MMSEH} = P_0 f_{i,i} (P_0 f_{i,i} f_{i,i}^H + \sigma_v^2 \mathbf{I})^{-1}$$
2) For transmit MMSE vector $w_{r,i}^{\text{MMSE}}$: The received signal at the ith destination is given by

$$z_{i,i} = g_{r,i}^T w_{r,i}^{\text{MMSE}} y_i + n_i,$$

with

$$y_i \triangleq w_{r,i}^{\text{MMSE}H} r_i = w_{r,i}^{\text{MMSE}H} (\sqrt{P_r} F_i s + v_i),$$

where $F_i \triangleq [f_{1,i}, \cdots, f_{K,i}] \in \mathbb{C}^{M \times K}$, and $s \triangleq [s_1, \cdots, s_K]^T$. And the transmit MMSE problem can be formulated as

$$\{w_{r,i}^{\text{MMSE}}, \kappa_{\text{MMSE},i}\} = \arg \min_{w,K} \mathbb{E}\{||y_i - \kappa^{-1} z_i||_2^2\}$$

$$\text{s.t. } \mathbb{E}\{||w y_i||_2^2\} = P_r.$$ \hfill (4.43)

And solving (4.43) follows the same way of solving (4.24), thus we obtain $w_{r,i}^{\text{MMSE}}$ as

$$w_{r,i}^{\text{MMSE}} = \kappa_{\text{MMSE},i} J_i^{-1} g_{r,i},$$
$$\kappa_{\text{MMSE},i} = \frac{P_r}{\text{tr}(J_i^{-2} g_{r,i}^* R y_i g_{r,i}^T)},$$

where $J_i \triangleq g_{r,i}^* g_{r,i}^T + \sigma_n^2 P_r I$ and $R_{y_i} \triangleq \mathbb{E}[y_i y_i^*]$.

3) For MMSE matrix W_i^{MMSE}: Using the Sherman Morrison formula $(A + uv^H)^{-1} = A^{-1} - \frac{A^{-1}uv^HA^{-1}}{1 + v^HA^{-1}u}$, for matrix A and vector u, v [68], we can rewrite $w_{r,i}^{\text{MMSE}H}$ as

$$w_{r,i}^{\text{MMSE}H} = f_{i,i}^H (f_{i,i} f_{i,i}^H + \frac{\sigma_n^2}{P_r} I)^{-1}$$

$$= f_{i,i}^H \left(\frac{P_0}{\sigma_v^2} I - \frac{P_0 f_{i,i} f_{i,i}^H f_{i,i} + \sigma_n^2 I}{1 + f_{i,i} f_{i,i}^H f_{i,i}} \right)$$

$$= \frac{P_0}{\sigma_v^2} \left(f_{i,i}^H - \frac{f_{i,i} f_{i,i}^H f_{i,i}}{\sigma_n^2 + f_{i,i} f_{i,i}^H} \right)$$

$$= \lambda f_{i,i}^H,$$ \hfill (4.44)
where $\lambda_i = \left(\frac{\sigma_n^2}{P_r} + f_i^H f_{i,i} \right)^{-1} \in \mathbb{R}$. Similar for $w_{T,i}^{\text{MMSE}}$, we have

$$\begin{align*}
w_{T,i}^{\text{MMSE}} &= \kappa_{\text{MMSE},i} J_i^{-1} g_{i,i}^* \\
&= \kappa_{\text{MMSE},i} (g_{i,i}^* g_{i,i}^T + \frac{\sigma_n^2}{P_r} I)^{-1} g_{i,i}^* \\
&= \kappa_{\text{MMSE},i} \mu_i g_{i,i}^*,
\end{align*}$$

(4.45)

where $\mu_i = \left(\frac{\sigma_n^2}{P_r} + g_{i,i}^T g_{i,i}^* \right)^{-1} \in \mathbb{R}$. Next we rewrite $\kappa_{\text{MMSE},i}$ as following

$$\begin{align*}
k_{\text{MMSE},i}^2 &= \frac{P_r}{\text{tr}(J_i^{-2} g_{i,i}^* R_y g_{i,i}^T)} \\
&= \frac{P_r}{\text{tr}((J_i^{-1} g_{i,i}^*) R_y (J_i^{-1} g_{i,i}^*)^H)} \\
&= \frac{P_r}{\text{tr}(R_y) \mu_i^2 \|g_{i,i}\|^2}.
\end{align*}$$

Also from 4.44 we have

$$R_{y_i} = \mathbb{E}\{|w_{R,i}^{\text{MMSE}H} r_i|^2\} = \lambda_i^2 f_i^H R_r f_{i,i}. \quad (4.46)$$

Using (4.44), (4.45) (4.46), we can rewrite W_i^{MMSE} as

$$\begin{align*}
W_i^{\text{MMSE}} &= w_{T,i}^{\text{MMSE}} w_{R,i}^{\text{MMSE}H} \\
&= \sqrt{\frac{P_r}{\text{tr}(f_i^H R_r f_{i,i})} \lambda_i^2 \|g_{i,i}\|^2 \mu_i g^* f_{i,i}^H} \\
&= \sqrt{\frac{P_r \|f_{i,i}\|^2}{\text{tr}(f_i^H R_r f_{i,i})} g_{i,i}^* f_{i,i}^H} \\
&= W_i^{\text{MRC}}
\end{align*}$$

So we have proved that in single pair scenario, W_i^{MMSE} and W_i^{MRC} are the same. ■
Chapter 5
Conclusions

In this thesis, we consider a multi-cluster AF relay interference network and design relay beam matrix for each cluster to maximize the minimum SINR at destinations subject to the relay power budget within each cluster. We assume that the dedicated relay(s) for each pair can be either a multi-antenna relay or multiple relays capable of signal sharing to form virtual multi-antenna, and both single and multiple S-D pair scenarios are considered.

We first consider the problem in single pair scenario. A beam matrix structure as a weighted sum of two types of beam matrices is proposed: ZF beam matrix for inter-cluster interference suppression, and MRC beam matrix for beamforming gain maximization within a cluster. The optimal beam matrix for each type is obtained with a closed-form solution. We then obtain the optimal weights to each type of beam matrix by transforming the max-min SINR problem and solving it via the SDR approach. Comparing with applying the direct SDR approach to the original problem, our solution offers similar performance with significantly lower computational complexity. In addition, our proposed structured beam matrix clearly revealed the power shift between interference suppression among clusters and beamforming gain
maximization within the cluster as the distance among clusters changes.

We then extend our study to multiple S-D pair case in which different users in the same cluster also communicate interference to each other. A similar beam matrix as weighted sum of ZF and MMSE is proposed to solve the problem together with a direct SDR approach as a comparison. Simulations show that our proposed solution provides similar SINR performance with that of direct approach, and the performance gap decreases as the number of relays increases. Additionally, proposed approach also has significant lower computational complexity and the ability of revealing the power shift as the distance among clusters or size of clusters changes.
Bibliography

