Brønsted acid-catalyzed reaction of alkynyltrifluoroborates with acetals and ketals

By

Matthew Baxter

A Thesis Submitted in Partial Fulfillment
of the requirements for the Degree of

Master of Science

in

The Faculty of Science

Applied Bioscience program

University of Ontario Institute of Technology

April, 2015

© Matthew Baxter 2015
Abstract

The synthesis of small molecules is crucial in the pharmaceutical industry for producing drugs or biologically active compounds. Developing new methods to synthesize molecules is necessary for the advancement of new pharmaceutical compounds. Specifically, the formation of new carbon-carbon bonds is of great importance in synthetic organic chemistry. Brønsted acid catalysis is a powerful synthetic tool to make many different compounds, however, the current carbon-based nucleophiles are the major limitation of acid-catalyzed reactions. In effort to expand repertoire of Brønsted acid compatible nucleophiles, we present a novel carbon-carbon bond forming methodology between acetals, ketals, and potassium phenylacetylene trifluoroborate salts. In the presence of a Brønsted acid, acetals form oxocarbenium electrophiles, which subsequently react with trifluoroborates to form propargylic ethers. Reaction times of 15 minutes and use of 1.1 equiv. of acid and trifluoroborate make this methodology very atom economical. Excellent functional group tolerance is observed with this protocol including, halogen, nitrile, nitro, acid and carbonyl functionalities. To our knowledge, this is also the first alkynylation procedure compatible with ketal substrates.
Acknowledgements

First and foremost, I would like to express my sincere appreciation to my supervisor, Dr. Yuri Bolshan, for giving me the privilege to work in his research group. Since starting my undergraduate thesis with him in the fall of 2012, I have gained invaluable experience. Continuing through to my Masters degree with Dr. Bolshan, my skills as an organic chemist have grown tremendously. In these three years, I have also grown as a person due to his influence. The opportunities that Dr. Bolshan has given me truly made me appreciate how chemistry is conducted and discussed in the scientific community. He allowed me to give an oral presentation at QOMSBOC 2014, where I showcased my findings to the scientific community. This opportunity helped develop my presentation skills, as well as the confidence to talk about my research to experts in the field. Our work is also in the process of being published in peer-reviewed journals. These experiences have solidified my love for the sciences and it is due to Dr. Bolshans’ guidance, encouragement and vast knowledge.

I would like to thank my committee members for their on-going support throughout my Masters. Dr. Jean-Paul Desaulniers has irrefutable knowledge of organic chemistry, which has inspired me throughout my undergraduate and graduate studies. His influence has always been positive and for the betterment of my research experience. My sincerest gratitude also goes to Dr. Viirre for his vast knowledge of transition metal catalysis, which was an invaluable asset to me throughout my research. Dr. Viirre was also the organizer and host of QOMSBOC 2014, where he was gracious enough to give me the opportunity to present my work. I would also like to thank Dr. Olena Zenkina for giving her time to serve as my external examiner.

The love and support from my parents Judy and Ken Baxter has been greatly appreciated throughout my masters and my life. The foundations of learning and striving for excellence were instilled in me at a young age by them. Their sacrifices have been on my behalf and solely for my benefit. Without them this journey would have been unimaginable and I cannot thank them enough for what they have done. I would also like to thank my grandfather who always showed an interest in my progress and success on this journey.
My fellow lab members Cassandra Taylor and Kayla Fisher of the Bolshan research group have been an imperative part of my success. They gave me the opportunity to discuss ideas with them, as well as advice on how to improve my work at hand. Along with this, they completely understand the struggles that we face on a daily basis, and their support throughout my experience has been outstanding.

I want to send my deepest gratitude to my girlfriend Tanya Fernandes, who supported me through this whole experience. She was extremely helpful as she understood what I had to do as a scientist and at times had very valuable input. Her love and support was definitely a driving force in this experience.

My thanks go out to the UOIT chemistry lab technicians Michael Allison, Genevieve Barnes and Clayton Jakins. These three wonderful people were there from the beginning stages of my development as a chemist during my undergraduate degree. I had the privilege of working with them in the summer of 2012, as a work study student. Their understanding and wisdom helped get me through my undergraduate degree and gave me the foundation to build on in graduate school. Our instrument expert Michael Allison, taught me to independently operate the gas chromatography instrument during my research. I greatly appreciate the time he dedicated to me as well as the trust that he put into me. Genevieve Barnes trained me to run FT-IR on all of my samples made, which was another instrument technique that I am grateful to have developed. Lastly, Clayton Jakins gave me the opportunity to conduct lab safety checks for undergraduate labs and do proper chemical inventory during my 2012 work study. This knowledge was very important for lab safety, which I needed during my latter research. I thank these three individuals for their belief in me during my undergraduate degree and their continued long term support.

I also need to thank Chris McKim, Brandon Peel, Gordon Hagen and the rest of the Desaulniers research group. I had the opportunity to do group meetings with the Desaulniers group, where I developed my presentation and problem solving skills. Chris McKim and Brandon Peel were senior lab members when I began my masters and their advice cannot go unrecognized. They also were generous enough to share chemicals and even allow us to use their rotary evaporator and other lab equipment.
I would like to thank the entire chemistry faculty of UOIT who have helped make me into the person that I am today. Of particular importance I would like to thank Dr. Richard Bartholomew for advancing my quantitative analytical techniques during my undergraduate degree. I also thank Dr. Kevin Coulter, for giving me a work study position in the summer of 2012, and for giving me the fundamental knowledge of organic chemistry. I also thank Edmond Courville for his prompt ordering chemicals as well as with waste management protocols.

Finally, I thank NSERC and UOIT for funding my research and thank UOIT for allowing me to do research in your excellent facilities.
Contents

Chapter 1: Introduction and Literature Review ... 1

1.1 Brønsted acid catalysis .. 1

1.2 Alkynylation of acetals using alkylnylmetal reagents ... 2

1.2.1 Alkynylstanne reactions with acetals .. 2

1.2.2 Alkynylalane reactions with acetals .. 3

1.2.3 Gold catalyzed alkynylation reactions with acetals ... 4

1.2.4 Copper-catalyzed alkynylation of oxocarbenium ions .. 4

1.2.5 Zinc-catalyzed coupling of alkynes with acetals .. 5

1.2.6 Conclusions of metal-catalyzed alkynylation of acetals .. 5

1.3 Lewis acid catalyzed reactions of organotrifluoroborates .. 6

1.3.1 Reactions of trifluoroborates with azides ... 6

1.3.2 Reactions of trifluoroborates with epoxides .. 6

1.3.3 Reactions of trifluoroborates with oxocarbenium ions ... 7

1.4 Literature gaps .. 9

1.5 Research objective ... 10

Chapter 2: Development of methodology for the alkynylation of acetals and ketals with
alkynyltrifluoroborates ... 10

2.1 Synthesis of a library of acetals and ketals .. 10

2.2 Synthesis of various alkylnyltrifluoroborate salts ... 13

2.3 Optimization of reaction between acetals and trifluoroborates 14

2.3.1 Brønsted acid catalyst screen ... 14

2.3.2 Optimization of reaction temperature for benzylic acetals 15

2.3.3 Optimization of benzylic acetals bearing electron donating functional
groups 15
2.4 Scope of Brønsted acid-catalyzed alkynylation of acetals................................. 17
 2.4.1 Reaction of various acetals with phenylacetylene trifluoroborate (S1).......... 17
 2.4.2 Reactions of various acetals with alkynyltrifluoroborates.......................... 20
 2.4.3 Application to 2-methoxytetrahydropyran.. 23
 2.4.4 Reaction of acetals with alkenyltrifluoroborates 24
 2.4.5 Conclusion of reactions between acetal and trifluoroborate........................ 25

2.5 Alkynylation of ketals using alkynyltrifluoroborates.................................... 26
 2.5.1 Optimization of conditions for the alkynylation of ketals 26
 2.5.2 Reactions of various alkynyltrifluoroborates with ketals 27
 2.5.3 Conclusions on alkynylation of ketals ... 28

2.6 Applications of products .. 28

2.7 Future work .. 29
 2.7.1 Reaction of trifluoroborates with N,O-acetals for the synthesis of amines 29
 2.7.2 Reactions of trifluoroborates with glycosides.. 30
 2.7.3 Single-pot dialkynylation ... 30

2.8 General Conclusions ... 30

Chapter 3: Experimental Procedures.. 31

3.1 General Information .. 31

3.2 Acetal and ketal synthesis .. 32
 3.2.1 General procedure for acetal and ketal synthesis (Procedure 1).................... 32

3.3 Synthesis of alkynyltrifluoroborates .. 32
 3.3.1 General procedure for the synthesis of alkynyltrifluoroborates (Procedure 2).... 33

3.4 General Procedure for the reaction of acetals and alkynyltrifluoroborates 33
 3.4.1 alkynylation of acetals with trifluoroborates (procedure 3) 33

3.5 General Procedure for the reaction of ketals and alkynyltrifluoroborates 34
3.5.1 alkynylation of ketals with trifluoroborates (procedure 4) 34

References .. 35

Appendix .. 36
List of Figures

Figure 1. Reaction intermediates of Lewis acid and Brønsted acid catalysis. ... 1
Figure 2. Common Brønsted acid catalysts. ... 1
Figure 3. Nucleophile scope of Brønsted acid catalyzed reactions .. 2
Figure 4: Synthesis of acetals and ketales following procedure 1 ... 11
Figure 5: Failed acetalizations and ketalizations .. 12
Figure 6. Purchased acetals and ketals ... 12
Figure 7. Trifluoroborates synthesized using procedure 2 .. 13
Figure 8. Acetal scope following procedure 3 ... 19
Figure 9. Scope of alkynyltrifluoroborate salts for procedure 3 ... 23
Figure 10: reactions of alkenyltrifluoroborates and acetals ... 25
Figure 11. Reactions of various trifluoroborates with ketals .. 28

List of Tables

Table 1: Optimization of Brønsted acid catalyst for synthesis of 1a. ... 14
Table 2: Optimization of temperature for benzylic acetals ... 15
Table 3: Optimization of temperautre for electron rich benzylic acetals .. 16
Table 4: Optimization of conditions for acetals bearing a free carboxylic acid ... 20
Table 5: Optimization of cyclic acetal substrates .. 24
Table 6: Optimization of conditions for alkynylation of ketals .. 27
List of Schemes

Scheme 1: General mechanism for alkynylation of acetals using alkynylmetal reagents. 2
Scheme 2: Alkynylation of mixed acetals with alkynylstannanes ... 2
Scheme 3: Alkynylation of acetals with alkynylalanes ... 3
Scheme 4: Alkynylation of 4-acetoxy-1,3-dioxanes with alkynylalanes .. 3
Scheme 5: Alkynylation of N,O-acetals with alkynylalanes ... 4
Scheme 6: Gold catalyzed reaction of acetals with terminal alkynes .. 4
Scheme 7: Gold catalyzed aldol based reaction; propargylic ether by-product 4
Scheme 8: Copper-catalyzed reaction of acetals with terminal alkynes ... 5
Scheme 9: Scope of propargylic ether synthesis from alkynylzinc reagents and acetals 5
Scheme 10: Metal catalyzed reaction of TMS-acetylenes and acetals ... 5
Scheme 11: Synthesis of secondary amines from azide functionalized alkyltrifluoroborates 6
Scheme 12: Lewis acid-catalyzed opening of epoxides with trifluoroborates 6
Scheme 13: Lewis acid promoted formation of oxocarbenium ion from acetals 7
Scheme 14: Synthesis of α-C-glycosides from glucans and trifluoroborates 7
Scheme 15: α-C-glycoside synthesis from organotrifluoroborates and glycosyl fluorides 7
Scheme 16: Reaction of chromene with organotrifluoroborates through oxidative C-H bond cleavage ... 8
Scheme 17: Metal-free alkynylation of acyl chlorides with alkynyltrifluoroborates 8
Scheme 18: Lewis acid-catalyzed reaction of organotrifluoroborates and acetals 9
Scheme 19: Mechanism of Lewis acid-catalyzed reaction between acetals and R-BF$_3$K 9
Scheme 20: Brønsted acid catalyzed reaction of trifluoroborates with electrophiles 10
Scheme 21: Proposed reaction of alkynyltrifluoroborates with acetals and ketals 10
Scheme 22: Reactions of acetals bearing strong electron-donating groups .. 17
Scheme 23: Optimized conditions for reactions of alkynyltrifluoroborates and acetals 17
Scheme 24: Reaction of 2-methoxytetrahydropyran with styryltrifluoroborate 25
Scheme 25: Applications of propargylic ethers .. 29
Scheme 26: Synthesis of propargylic amines from N,O-acetals ... 29
Scheme 27: Synthesis of sugar acetylenes ... 30
Scheme 28: Single-pot controlled dialkynylation to form tertiary-carbon centers 30
Scheme 29: Synthesis of acetals and ketals. ... 32
Scheme 30: Synthesis of potassium alkynyltrifluoroborate salts. .. 32
Scheme 31: Alkynylation of acetals using alkynyltrifluoroborates 33
Scheme 32: Alkynylation of ketals using alkynyltrifluoroborates .. 34
List of Abbreviations

Equiv: equivalents

TMSOTf: trimethylsilyl triflate

BF₃·OEt₂: boron trifluoride diethyl etherate

TMS: trimethylsilyl

C-C: carbon-carbon

AlEt₂Cl: diethylaluminum chloride

CH₂Cl₂: dichloromethane

Et₂O: diethyl ether

DIPEA: N,N-diisopropylethylamine

CH₃CN: acetonitrile

AgOTf: silver (I) triflate

Au(PPh₃)Cl: Chloro(triphenylphosphine)gold (I)

DCE: dichloroethane

HC(OEt)₃: triethylorthoformate

AgNTf₂: Silver bis(trifluoromethanesulfonyl)imide

(t-Bu)₂(o-biphenyl)PAuCl: chloro[(1,1′-biphenyl-2-yl)di-tert-butylphosphine]gold(I)

Cu(MeCN)₄PF₆: tetrakis(acetonitrile)copper(I) hexafluorophosphate

ZnCl₂: Zinc (II) chloride

SnCl₄: tin (IV) chloride

SiCl₄: silicon tetrachloride
H₂O: water

r.t: room temperature

TFAA: trifluoroacetic anhydride

DDQ: 2,3-dichloro-5,6-dicyano-1,4-benzoquinone

LiClO₄: lithium perchlorate

4 Å MS: 4 Angstrom molecular sieves

C-H: carbon-hydrogen

BCl₃: boron trichloride

n-BuLi: butyl lithium

pKa: acid dissociation constant

NEt₃: triethylamine

TiCl₄: titanium (IV) chloride

MeOH: methanol

B(OMe)₃: trimethylborate

THF: tetrahydrofuran

KHF₂: potassium hydrogen difluoride

HCl: hydrochloric acid

HF₆Sb·6H₂O: fluoroantimonic acid hexahydrate

CF₃COOH: trifluoroacetic acid

HBF₄·OEt₂: tetrafluoroboric acid diethyl etherate

min: minutes
CH$_3$CH$_2$CN: propionitrile

Ar$_{(g)}$: argon gas

MgSO$_4$: magnesium sulfate

1H-NMR: proton nuclear magnetic resonance spectroscopy

13C-NMR: carbon nuclear magnetic resonance spectroscopy

19F-NMR: fluorine nuclear magnetic resonance spectroscopy

11B-NMR: boron nuclear magnetic resonance spectroscopy

FT-IR: Fourier transform infrared spectroscopy

HRMS: High resolution mass spectrometry
Chapter 1: Introduction and Literature Review

1.1 Brønsted acid catalysis

The use of a protic acid in the presence of a nucleophile is the fundamental principal of Brønsted acid catalysis. This is in contrast to Lewis acid catalysis, where an electron deficient species will activate a C=X bond (X = O, NR, CR₂), promoting a nucleophilic attack (Figure 1).

![Figure 1. Reaction intermediates of Lewis acid and Brønsted acid catalysis.](image)

Esterification and acetalization reactions are known Brønsted acid catalyzed processes, however, carbon-carbon bond forming reactions using Brønsted acids are not as prevalent compared to Lewis acid catalyzed processes. This growing field encompasses transformations such as the Mannich reaction, allylations, aldol reactions, and asymmetric syntheses, using many different Brønsted acids (Figure 2).

![Figure 2. Common Brønsted acid catalysts.](image)

These different carbon-carbon bond forming reactions involve electrophiles such as activated alkenes, aldehydes, and acetals. For all of these known reactions, the nucleophile scope is limited to enol derivatives, allylating agents and heteroatoms (OH, NHR₂, SH) (Figure 3). To the best of our knowledge, potassium alkynyltrifluoroborate salts have not been used as nucleophiles in a Brønsted acid catalyzed reaction.
1.2 Alkynylation of acetics using alkynylnmetal reagents

Alkynyln metal nucleophiles including stannanes,14,15 alanes,16-19 gold,20,21 copper22 and zinc23 are all known to react with acetic electrophiles in the presence of Lewis acids to form propargylic ethers. These reactions proceed through the formation of an oxocarbenium intermediate, which is the electrophilic species of the reaction (Scheme 1).

\begin{equation}
\begin{aligned}
R^1&&\equiv&M
\text{M} = \text{SnR}_3, \text{AlR}_2, \\
\text{AuL, CuL, ZnCl}
\end{aligned}
\end{equation}

Scheme 1: General mechanism for alkynylation of acetics using alkynylnmetal reagents.

1.2.1 Alkynylnstanne reactions with acetics

Linderman and coworkers demonstrated that alkynylnstannanes react with mixed acetics in the presence of a Lewis acid catalyst.14 The reaction is also stereoselective when using a stannyl substituted acetal. This method, though high yielding, has substrate tolerance limited to alkyl, phenyl and alkyl ester containing acetics. Tolerance of the ester functional group is only observable when it is in a remote location on the acetal (Scheme 2). The reaction also requires the use of 2.0 equiv. of alkynylnzinc reagent and 1.5 equiv. of TMSOTf.

Scheme 2: Alkynylation of mixed acetics with alkynylnstannanes
Alkynylstannes have also been shown to react with cyclic acetals in the presence of a TiCl₄ Lewis acid, to form chiral alcohols.¹⁵ This method required the use of 2.0 equiv. of alkynylzinc reagent and 1.6 equiv. of TiCl₄. Very limited functional group tolerance was observed for this synthesis as well.

1.2.2 Alkynylalane reactions with acetals

Alkynylalanes react with acetals in the presence of Lewis acids as demonstrated by Yoshimatsu and coworkers. Two examples of alkynylalanes were shown to react with 2-(chalcogeno)prop-2-enal acetals (Scheme 3).¹⁶ This procedure required 3 equiv. of TMSOTf and 5 equiv. of alkynylalane to afford the desired product.

Scheme 3: Alkynylation of acetals with alkynylalanes

Rychnovsky and coworkers demonstrated a variety of alkynylalanes reacting with 4-acetoxy-1,3-dioxanes.¹⁹ With this approach, the alkynylalanes are pre-formed as the limiting reagent using n-BuLi, before the addition of 7.5 equiv. of BF₃·OEt₂ and 5.5 equiv. of starting material (Scheme 4). This procedure only tolerates TMS-acetyl enes and unsubstituted alkynes and requires a large excess of Lewis acid catalyst and starting material, thus it has a low atom economy.

Scheme 4: Alkynylation of 4-acetoxy-1,3-dioxanes with alkynylalanes

The alkynylation of N,O-acetals have also been reported using alkynylalanes.¹⁷,¹⁸ Though the products of these reactions are amines, the mechanism is similar, proceeding through an iminium ion intermediate (Scheme 5). In both cases, only alkyl and halogen functional groups are tolerated.
1.2.3 Gold catalyzed alkynylation reactions with acetals

Two accounts show gold catalysts activating terminal alkynes to react with acetals, forming propargylic ether products. Wang and coworkers demonstrated that gold and silver catalyze the reaction of acetals and aldehydes with alkynes (Scheme 6). A method reported by Hu, X. and coworkers results in the formation of a propargylic ether by-product, for a gold catalyzed aldol based reaction (Scheme 7). Both methods require a loading of 5 mol % gold catalysts for the preparation of these products.

1.2.4 Copper-catalyzed alkynylation of oxocarbenium ions

Isochroman acetals are known to react with terminal alkynes in the presence of copper and Lewis acid catalysts as shown by Watson and coworkers. The reaction conditions are also effective at alkynylation acyclic acetals (Scheme 8). These conditions although effective, have functional group tolerance limited to halogens, ethers and esters, and require 12 hour reaction times.
Scheme 8: Copper-catalyzed reaction of acetics with terminal alkynes.

1.2.5 Zinc-catalyzed coupling of alkynes with acetals

Alkynylzinc reagents are also effective coupling partners with acetals. Many different functionalized terminal alkynes were shown to effectively couple with acetals to form propargylic ethers. A diverse substrate scope was observed for the alkyne; while the acetics used were limited to ether or halogen substituents (Scheme 9).

Scheme 9: Scope of propargylic ether synthesis from alkynylzinc reagents and acetals.

A final example, reported by Hayashi and coworkers makes use of a zinc and tin catalyst system for the synthesis propargylic ethers from trimethylsilyl-alkynes and acetals. This reaction only tolerated alkyl and aryl acetals and trimethylsilyl-alkynes, often needing excess of acetal (Scheme 10).

Scheme 10: Metal catalyzed reaction of TMS-acetylenes and acetals.

1.2.6 Conclusions of metal-catalyzed alkynylation of acetals

Various literature examples of metal-catalyzed alkynylation of acetals all prove effective at synthesizing propargylic ethers. A common theme of poor functional group tolerance is observed, due to the use of Lewis acid catalysts. In many cases, it is necessary to pre-form unstable starting materials. In addition, the use of expensive metal
catalysts is sometimes required. Therefore, there is a need for new efficient and more functional group tolerant methodologies for the synthesis of propargylic ethers.

1.3 Lewis acid catalyzed reactions of organotrifluoroborates

Organotrifluoroborate salts have emerged as powerful tools for C-C bond forming reactions in metal-free catalysis. Lewis acid catalyzed reactions with trifluoroborates have been reported with azides, epoxides, glucals, acyl chlorides and acetals. Among these examples, the reaction of trifluoroborates with oxocarbenium electrophiles has been reported.

1.3.1 Reactions of trifluoroborates with azides

Matteson has reported the asymmetric synthesis of secondary amines from azide containing alkyltrifluoroborates. This reaction requires the use of excess Lewis acid to promote the formation of an alkyldifluoroborane intermediate, which reacts with the terminal azide to form secondary amines (Scheme 11).

![Scheme 11: Synthesis of secondary amines from azide functionalized alkyltrifluoroborates.](image)

1.3.2 Reactions of trifluoroborates with epoxides

Csáký reported the opening of epoxides with trifluoroborate salts using TFAA as a catalyst (Scheme 12). His work shows alkenyl and aryl trifluoroborates are needed in slight excess for the reaction with epoxides, while requiring only 50 mol% of a Lewis acid catalyst.

![Scheme 12: Lewis acid-catalyzed opening of epoxides with trifluoroborates.](image)
1.3.3 Reactions of trifluoroborates with oxocarbenium ions

Overall, six accounts of Lewis acid catalyzed reactions of trifluoroborate salts with oxocarbenium ions have been reported. Oxocarbenium ions constitute stabilized carbocations making them excellent candidates for C-C bond forming reactions (Scheme 13).

Scheme 13: Lewis acid promoted formation of oxocarbenium ion from acetics.

Stefani and coworkers demonstrated the reaction of alkynyltrifluoroborates with D-glucals for the synthesis of α-C-glycosides. Various alkynyltrifluoroborates were shown to react with 3,4,6-tri-O-Acetyl-D-glucal (Scheme 14). α-Alkynyl-glycosides have multiple applications and can be further transformed into various scaffolds. The use of Lewis acid catalyst BF₃•OEt₂ limits the functional group tolerance to the ester and ether functional groups.

Scheme 14: Synthesis of α-C-glycosides from glucans and trifluorborates

Liu and coworkers also reported a synthesis of α-C-glycosides from glycosyl fluorides. This reaction was effective at reacting alkynyl and alkenyl trifluoroborate salts with α-F-glycosides bearing a variety of different protecting group (Scheme 15).

Scheme 15: α-C-glycoside synthesis from organotrifluoroborates and glycosyl fluorides.
Floreancig showed oxocarbenium ions of chromene, which form upon reaction with DDQ, will react with alkynyl, alkenyl and aryl trifluoroborates (Scheme 16). This method tolerates various substituted chromene derivatives including, ether, nitrile and silyl functional groups.

\[
\begin{array}{ccc}
\text{DDQ, LiClO}_4, & \text{4 Å MS, 0°C} & \text{Scheme 16: Reaction of chromene with organotrifluoroborates through oxidative C-H bond cleavage.} \\
\text{CH}_3\text{CN} & \left[\begin{array}{c} \text{O} \\ \text{ClO}_4^- \end{array} \right] & \text{R}^1-\text{BF}_3\text{K}
\end{array}
\]

Recently, our research group reported a metal free synthesis of ynones from acyl chlorides and alkynyltrifluoroborate salts under very mild conditions. In situ formation of Lewis acidic dichloroboranes from trifluoroborate salts allows for the oxocarbenium ion to form from the acyl chloride (Scheme 17). These conditions allow for the synthesis of a repertoire of ynones, which have a variety of synthetic applications. This methodology tolerates halogenated and ether functional groups and requires non-forcing reaction conditions.

\[
\begin{array}{ccc}
\text{R}^1\text{Cl} & \text{+ R}^2\text{==}-\text{BF}_3\text{K} & \text{BCl}_3, \text{CH}_2\text{Cl}_2, \text{rt, 30 min} \\
& & \text{Scheme 17: Metal-free alkylation of acyl chlorides with alkynyltrifluoroborates.}
\end{array}
\]

The Lewis acid catalyzed reactions of acetals and trifluoroborates have been explored by Bode using MOM-protected alcohols and mixed hydroxamic acid derived acetals. Both were shown to be effective coupling partners with a variety of trifluoroborate salts (Scheme 18).
Scheme 18: Lewis acid-catalyzed reaction of organotrifluoroborates and acetals.

In both cases, oxocarbenium ions are the electrophilic intermediates that form in the presence of Lewis acids (Scheme 19). Alkynyl, alkenyl, aryl and hetero-aryl trifluoroborate salts react as nucleophiles in these reactions. Though high yielding, these reactions only tolerate esters, ether and halogen functional groups. Another limitation of this method is the need for large excess of reagents. Upwards of 4 equiv. of trifluoroborate and 4 equiv. of BF$_3$·OEt$_2$ are required for the transformation to take place.

Scheme 19: Mechanism of Lewis acid-catalyzed reaction between acetals and R-BF$_3$K.

1.4 Literature gaps

Trifluoroborates are known to react with oxocarbenium ions in the presence of Lewis acid catalysts (Scheme 19). To the best of our knowledge, there are no reports regarding Brønsted acid-catalyzed reaction of trifluoroborates with acetals in the literature. When considering Brønsted acids as catalysts, many potential benefits arise over traditional Lewis acids.

Brønsted acids are shelf stable, less toxic and inexpensive alternatives of Lewis acids. There are also many more commercially available Brønsted acids, which can have a broad range of pKa values and solubility. In addition, Brønsted acids exhibit greater functional group tolerance than their counterparts.
Brønsted acid catalysis currently has a modest repertoire of nucleophiles available, with C-C bond forming reactions limited mainly to enol derivatives, allylating agents and heteroatoms (Figure 3). Expanding the scope of carbon nucleophiles for Brønsted acid catalysis will open doors to new efficient transformations.

1.5 Research objective

To address these literature gaps, we hypothesized that trifluoroborate salts will act as nucleophiles in the presence of Brønsted acid catalysts (Scheme 20).

\[
R{-BF}_3K + E \xrightarrow{\text{Brønsted acid}} \text{Solvent} \xrightarrow{\text{??}} R{-E}
\]

Scheme 20: Brønsted acid catalyzed reaction of trifluoroborates with electrophiles.

Our investigation focused on a Brønsted acid-catalyzed reaction between alkynyltrifluoroborate salts and acetals (Scheme 21). Our objective was to develop a novel, efficient methodology for the alkynylation of acetals using trifluoroborate salts, which is high yielding, atom economical and tolerates many different functional groups.

\[
\begin{align*}
\text{MeO} & \quad \text{OMe} \\
\text{R}^1 & \quad \text{+} \quad \text{R}^2{-BF}_3K \\
\xrightarrow{\text{Brønsted acid}} \text{Solvent} \\
\xrightarrow{\text{??}} & \text{MeO} \\
\end{align*}
\]

Scheme 21: Proposed reaction of alkynyltrifluoroborates with acetals and ketals.

Chapter 2: Development of methodology for the alkynylation of acetals and ketals with alkynyltrifluoroborates

2.1 Synthesis of a library of acetals and ketals

Our investigation needed a variety of acetals to use as substrates for the alkynylation. Some of these acetals are commercially available. However, the availability and affordability of aldehydes prompted us to use them as starting materials. The acetals were prepared from aldehydes using a modified procedure reported by Porta (Procedure 1, Scheme 29). Their report states that using 1 mol % of TiCl$_4$ catalyst in the presence
of NEt$_3$ for acetalizations. In our experience, better conversions were achieved when the loading of TiCl$_4$ was increased to 5 mol %. Various acetals and ketals were synthesized using procedure 1. This method allowed us to synthesize acetals with halogen, nitro, nitrile, ester, ketone and carboxylic acid functional groups on a gram scale (Figure 4).

![Figure 4: Synthesis of acetals and ketals following procedure 1.](image)

This procedure was very effective at synthesizing a library of acetals, however, some aldehydes were not tolerated (Figure 5). Our available substrate scope was hindered in part due to the limitations of this procedure. A$_{22}$ did not react, presumably due to the free 1-hydroxyl group present. Nitrogen bearing acetals A$_{23}$ and A$_{24}$ also did not react under these conditions. We could not do reactions using phenol or aniline derivatives for our methodology.
Ketals K1 and K2 were effectively synthesized from cyclohexanone starting materials, however, a number of ketones including acetophenone, benzophenone, cycloheptanone and cyclopentanone did not form desired products. K8 was not obtained when Cyclopentanone was used as starting material. This is potentially due to the evaporation of the product.

![Chemical Reaction Diagram]

Figure 5: Failed acetalizations and ketalizations

A variety of inexpensive acetal and ketal derivatives were purchased (Figure 6). Aliphatic, halogen, aldehyde, pyridine and alcohol bearing acetals increased the different functional groups we were able to test. A15 is a cyclic acetal that has some resemblance to a glucals derivative, while K3 and K4 were additional acetone and acetophenone derivatives.

![Chemical Structures]

Figure 6. Purchased acetics and ketals.
2.2 Synthesis of various alkynyltrifluoroborate salts

The preparation of alkynyltrifluoroborates was done following procedure 2, reported by Stefani (Scheme 30). Trifluoroborates with a variety of functional groups are illustrated in Figure 7. This procedure allowed for gram quantities of trifluoroborates to be synthesized in high purity. Neutral trifluoroborates S1 to S3 were obtained in modest to good yields. Electron-rich trifluoroborates S4 and S10 were also obtained in modest yields. Electron-deficient trifluoroborates S5 to S9 were synthesized in modest to high yields, with S6 yielding 84%. Salts S5 and S9 bear electron-withdrawing trifluoromethyl groups, which is a functional group seen in a variety of pharmaceutical compounds. Trifluoroborates S6 and S7 bear chlorine substituents that can undergo latter metal-catalyzed functionalization. This procedure was effective in synthesizing a variety of different trifluoroborates. Current limitation of this procedure is the use of n-Bu-Li, which restricts the different functional groups that can be present on the trifluoroborates.

\[
\begin{align*}
R - &\text{H} \quad 1) \text{n-BuLi, THF, \text{ -70}^\circ\text{C, 1h}} \\
&\quad 2) \text{B(OMe)}_3, \text{ -60}^\circ\text{C, 2h}} \\
&\quad 3) \text{KH,F, H}_2\text{O, -20}^\circ\text{C to RT, 2h}} \\
\rightarrow \\
R &\text{BF}_3\text{K}
\end{align*}
\]

\[\text{S1, 65%} \quad \text{S2, 13%} \quad \text{S3, 62%} \]
\[\text{S4, 55%} \quad \text{S5, 56%} \quad \text{S6, 84%} \]
\[\text{S7, 60%} \quad \text{S8, 43%} \quad \text{S9, 32%} \]
\[\text{S10, 55%} \]

Figure 7. Trifluoroborates synthesized using procedure 2.
2.3 Optimization of reaction between acetals and trifluoroborates.

2.3.1 Brønsted acid catalyst screen

The first challenge we faced was finding a suitable Brønsted acid that would catalyze the reaction between acetals and alkynyltrifluoroborates. We tested a variety of different Brønsted acids using (2,2-dimethoxyethyl)benzene (A1) and phenylacetylene trifluoroborate (S1) (Table 1). HCl afforded (3-methoxybut-1-yne-1,4-diyl)dibenzene 1a in a modest 34 % (entry 1), which confirmed our hypothesis that a Brønsted acid can indeed catalyze this reaction. Fluoroantimonic acid gave a similar yield of 36 % for 1a (entry 2). This superacid did not have a significant increase in the yield of 1a compared to HCl, which lead us to believe that acid strength was not the underlying factor. Fluoroantimonic acid was also in its hydrated form, which ran the risk of degradation of (2,2-dimethoxyethyl)benzene Al to its corresponding aldehyde. Trifluoroacetic acid, a commonly employed acid catalyst, produced 1a in only a 28 % yield. We then utilized HBF₄·OEt₂ (entry 4) as a catalyst, which afforded (3-methoxybut-1-yne-1,4-diyl)dibenzene 1a in a 86 % yield. Further investigation revealed that the reaction was complete in only 10 minutes, yielding 89 % of the desired (3-methoxybut-1-yne-1,4-diyl)dibenzene 1a (entry 5). This prompted us to use HBF₄·OEt₂ as a catalyst, because the reaction proceeds to completion in minutes, using only 1.1 equiv of trifluoroborate and catalyst.

Table 1: Optimization of Brønsted acid catalyst for synthesis of 1a.

<table>
<thead>
<tr>
<th>entry</th>
<th>Brønsted acid</th>
<th>Time (mins)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HCl [4M] in dioxane</td>
<td>60</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>HF₆Sb·6 H₂O</td>
<td>60</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>CF₃COOH</td>
<td>60</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>HBF₄·OEt₂</td>
<td>60</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>HBF₄·OEt₂</td>
<td>10</td>
<td>89</td>
</tr>
</tbody>
</table>
Acetonitrile was used as the solvent with no further optimization. Besides the obvious high yields obtained with acetonitrile, this solvent was shown to be optimal in the work of Bode, J.31,32, as well as by Kayla Fisher for the reaction of trifluoroborates with stabilized carbocations (Bolshan Group, \textit{unpublished results}).

2.3.2 Optimization of reaction temperature for benzylic acetals

Applying the optimized conditions to (dimethoxymethyl)benzene \textit{A2}, significant decrease in yield of (3-methoxyprop-1-yne-1,3-diyl)dibenzene \texti{1b} to 60% was observed compared to the yield of (3-methoxybut-1-yne-1,4-diyl)dibenzene \texti{1a}, with full consumption of starting material observed (Table 2, entry 1). Decreasing the temperature to -10°C resulted in a drastic increase in yield of (3-methoxyprop-1-yne-1,3-diyl)dibenzene \textit{1b} to 85% (entry 2). (dimethoxymethyl)benzene \textit{A2} reacted within 10 minutes with only a slight decrease in yield to 83% at this lower temperature (entry 3).

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
entry & Temperature (°C) & Time (mins) & Yield (%) \\
\hline
1 & 0 & 60 & 60 \\
2 & -10 & 60 & 85 \\
3 & -10 & 10 & 83 \\
\hline
\end{tabular}
\caption{Optimization of temperature for benzylic acetals.}
\end{table}

2.3.3 Optimization of benzylic acetals bearing electron donating functional groups

When we used electron rich acetal (Dimethoxymethyl)-2-methylbenzene \textit{A3} under the optimized reaction conditions, a competing dialkynylated product (3-(o-tolyl)penta-1,4-diyn-1,5-diyl)dibenzene \textit{2a} was formed (Table 3, entry 1). The undesired by-product appeared due to the ability of the electron-donating group to stabilize a carbocation. With (dimethoxymethyl)benzene \textit{A2}, decreasing the temperature was effective to suppress the formation of the undesired product. Therefore, this approach was implemented for
(Dimethoxymethyl)-2-methylbenzene A3. A decrease of the reaction temperature to \(-30^\circ\text{C}\) resulted in a 66 % yield of (1-methoxy-3-phenylprop-2-yn-1-yl)-2-methylbenzene 1c, and effectively eliminated the formation of (3-(o-tolyl)penta-1,4-diye-1,5-diyldibenzene 2a (entry 2). Further decrease to \(-40^\circ\text{C}\) had a slight increase in yield of 1c to 70% (entry 3). Decreasing the reaction time to 15 minutes at \(-40^\circ\text{C}\) decreased the yield of 1c to 62 %. Decreasing the temperature of the system was no longer possible due to the fact that acetonitrile solidifies at \(-48^\circ\text{C}\). Upon using propionitrile as a solvent, the yields of (1-methoxy-3-phenylprop-2-yn-1-yl)-2-methylbenzene 1c rose dramatically, while maintaining the temperature at \(-40^\circ\text{C}\). A 90 % yield of (1-methoxy-3-phenylprop-2-yn-1-yl)-2-methylbenzene 1c was obtained after 15 minutes (entry 5), and a 98 % yield was seen after 60 minutes (entry 6). Initially, propionitrile was used due to its low melting point of \(-93^\circ\text{C}\). The increase in yield at \(-40^\circ\text{C}\) might be a consequence of the decreased solubility of trifluoroborates in propionitrile.

While these conditions were effective for weak electron-donating groups, the dialkynylation was still the only observed product for para-methoxy substituted A16 (Scheme 22).

Table 3: Optimization of temperature for electron rich benzylic acetals.

<table>
<thead>
<tr>
<th>entry</th>
<th>Temp (°C)</th>
<th>Time (mins)</th>
<th>Solvent</th>
<th>Yield 1c (%)</th>
<th>Yield 2a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-10</td>
<td>60</td>
<td>CH₃CN</td>
<td>trace</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>-30</td>
<td>60</td>
<td>CH₃CN</td>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-40</td>
<td>60</td>
<td>CH₃CN</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>-40</td>
<td>15</td>
<td>CH₃CN</td>
<td>62</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>-40</td>
<td>15</td>
<td>CH₂CH₂CN</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>-40</td>
<td>60</td>
<td>CH₂CH₂CN</td>
<td>96</td>
<td>0</td>
</tr>
</tbody>
</table>
After completing the optimization of reaction conditions, we were ready to explore a variety of substrates to see what was tolerated by this new methodology. The experiments will be conducted using 1.0 equiv of acetal, 1.1 equiv of trifluoroborate and 1.1 equiv of HBF₄·OEt₂ unless otherwise stated (Scheme 23). The desired -10°C reaction temperature was achieved using a salt ice bath.

2.4 Scope of Brønsted acid-catalyzed alkynylation of acetics

We further explored the acetal substrate scope with phenylacetylenetrifluoroborate salt S1 using the optimized reaction conditions (Figure 8). Bromo and chloro substituted acetals A4 and A5 gave products 1-bromo-4-(1-methoxy-3-phenylprop-2-yn-1-yl)benzene (1d) and 1-chloro-4-(1-methoxy-3-phenylprop-2-yn-1-yl)benzene (1e) in high yields of 89 % and 80 % respectively. These halogenated products can be further functionalized via transition metal catalysis. 1,3-dichloro-2-(1-methoxy-3-phenylprop-2-yn-1-yl)benzene (1f) yielded 64 % of the expected product and showed that sterically hindered 1,3-dichloro-2-(dimethoxymethyl)benzene (A6) still reacts well. Electron-withdrawing halogen functional groups are well tolerated using this methodology.

Additional alkyl and alkenyl acetals were reacted. (3-cyclopentyl-3-methoxyprop-1-yn-1-yl)benzene (1g) derived from cyclopentyl carboxaldehyde dimethyl acetal A7 was obtained in a 96 % yield, which showed a similar reactivity to (2,2-
dimethoxyethyl)benzene (A1). Alkenyl acetal A8 yielded (E)-(3-methoxyoct-4-en-1-yn-1-yl)benzene (1h) in a modest 49%. The lower yield of 1h could be a result of a potential conjugate addition to the alkene, resulting in an undesired by-product.

Electron-withdrawing nitro and nitrile groups present on acetals A9 and A10 resulted in higher yields compared to (2,2-dimethoxymethyl)benzene (A2). (1-methoxy-3-phenylprop-2-yn-1-yl)-4-nitrobenzene (1i) containing a nitro group, was obtained in a quantitative yield. Nitrile containing acetals afforded 4-(1-methoxy-3-phenylprop-2-yn-1-yl)benzonitrile (1j) in an excellent 94% yield. Notably the nitrile group did not act as a competing electrophilic site. 4-(dimethoxymethyl)benzoic acid (A11) is an acetal bearing a free carboxylic acid. 4-(1-methoxy-3-phenylprop-2-yn-1-yl)benzoic acid (1k) was obtained in a modest 39% yield under the optimized conditions (Table 4, entry 1). Albeit modest, this was encouraging because free acids usually require protection before reacting. After a minor optimization, 4-(1-methoxy-3-phenylprop-2-yn-1-yl)benzoic acid (1k) was obtained in a 73% yield with an increase loading of S1 and HBF₄·OEt₂ to 2.0 and 1.5 equiv. respectively. Though an increase of reagents is necessary for 1k, the success of a free carboxylic acid is unprecedented.

In general this methodology tolerated a wide range of substituents, however, some substrates were not tolerated. Furfural dimethyl acetal A18 did not afford 1l under the optimized conditions and cinnamyl aldehyde dimethyl acetal A19 did not form 1m. Both reactions of A18 and A19 resulted in the generation of an unidentified mixture of by-products. 1-dimethoxymethyl-3,4-methoxybenzene A17 did not form 1n, which was expected due to the presence of two electron-donating methoxy groups. Product 1o was not formed from 3-bromo-5-(dimethoxymethyl)pyridine A20 using the optimized conditions, nor when 2 equiv. of HBF₄·OEt₂ was used. 2 equiv. of HBF₄·OEt₂ was to ensure acid was still present in solution upon protonation of pyridine.
Figure 8. Acetal scope following procedure 3.

*Reaction run for 70 minutes. Reaction with 2.0 equiv S1, 1.5 equiv HBF$_4$OEt$_2$ and reacted for 80 mins. Used 2.0 equiv of HBF$_4$OEt$_2$. Isolated yields after chromatography.
Table 4: Optimization of conditions for acetals bearing a free carboxylic acid.

![Reaction Scheme]

<table>
<thead>
<tr>
<th>entry</th>
<th>Temp (°C)</th>
<th>Time (min)</th>
<th>Acid: S1 (equiv.)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-10</td>
<td>15</td>
<td>1.1:1.1</td>
<td>39 %</td>
</tr>
<tr>
<td>2</td>
<td>-10</td>
<td>60</td>
<td>1.5:1.5</td>
<td>26 %</td>
</tr>
<tr>
<td>3</td>
<td>-10</td>
<td>80</td>
<td>1.5:2.0</td>
<td>73 %</td>
</tr>
<tr>
<td>4</td>
<td>-10</td>
<td>80</td>
<td>2.0:1.5</td>
<td>49 %</td>
</tr>
<tr>
<td>5</td>
<td>RT</td>
<td>80</td>
<td>1.5:2.0</td>
<td>62 %</td>
</tr>
<tr>
<td>6</td>
<td>-10</td>
<td>80</td>
<td>1.1:2.0</td>
<td>35 %</td>
</tr>
</tbody>
</table>

2.4.2 Reactions of various acetals with alkynyltrifluoroborates

Neutral, electron-rich and electron-poor alkynyltrifluoroborates were then reacted with a variety of different acetals (Figure 9). 4-(3-([1,1’-biphenyl]-4-yl)-1-methoxyprop-2-yn-1-yl)benzonitrile (3a), derived from (4-dimethoxymethyl)benzonitrile (A10) and biphencylethenetrifluoroborate (S2), was obtained in a 75 % yield. This was lower than the yield of 94% obtained for 4-(1-methoxy-3-phenylprop-2-yn-1-yl)benzonitrile (1j), which was derived from A10 and phenylacetylenetrifluoroborate (S1). Biphenylacetylenetrifluoroborate (S2) yielded less than phenylacetylenetrifluoroborate (S1) due to the electron donating phenyl ring present on the biphencylethenetrifluoroborate (S2). This electron donating group could promote protodeborynation, which is a potential explanation for the decrease in yield. (4-dimethoxymethyl)nitrobenzene (A9) and naphthylethynyltrifluoroborate (S3) yielded 80 % for 1-(3-methoxy-3-(4-nitrophenyl)prop-1-yn-1-yl)naphthalene (4a). This was also lower than the quantitative yield of (1-methoxy-3-phenylprop-2-yn-1-yl)-4-nitrobenzene (1i) derived from A9 and phenylacetylenetrifluoroborate (S1), which could also be attributed to protodeborynation. 1-(4-(1-methoxy-3-(naphthalen-1-yl)prop-2-yn-1-yl)phenyl)ethan-1-one (4b) was obtained in a 79 % from 1-(4-(dimethoxymethyl)phenyl)ethan-1-one (A12) and naphthylethynyltrifluoroborate (S3),
which has a free ketone present. A comparable reactivity is observed between A9 and S3, which yield 80% for 4a. Though decreases in yield were observed, all of these neutral trifluoroborate salts still reacted efficiently with different acetals.

1-butyl-4-(3-(4-chlorophenyl)-3-methoxyprop-1-yn-1-yl)benzene (5a) was obtained in an excellent yield of 86% from (4-dimethoxymethyl)chlorobenzene A5 and 4-butylphenylacetylenetrifluoroborate S4. This yield was 6% higher than the yield of product 1e, derived from A5 and phenylacetylenetrifluoroborate (S1); revealing that electron-rich trifluoroborates are more reactive towards acetals. Temperature of -40°C was also required for this reaction due to the increased reactivity.

Electron-deficient trifluoroborates were used in the latter examples. (4-dimethoxymethyl)bromobenzene A4 and 2-trifluoromethylphenylacetylenetrifluoroborate S5 yielded 71% of 1-(3-(4-bromophenyl)-3-methoxyprop-1-yn-1-yl)-2-(trifluoromethyl)benzene (6a), which was a significant decrease compared to the reaction of A4 and phenylacetylenetrifluoroborate (S1) to form 1-bromo-4-(1-methoxy-3-phenylprop-2-yn-1-yl)benzene (1d). This decrease showed that electron-deficient trifluoroborates are less reactive than neutral trifluoroborates. A similar trend was observed for 1-(3-cyclopentyl-3-methoxyprop-1-yn-1-yl)-3-fluorobenzene (7a), which yielded 81% from cyclopentane carboxaldehyde dimethyl acetal (A7) and 3-fluorophenylacetylenetrifluoroborate (S6), a decrease of 15% compared to the yield of product 1g, which used cyclopentane carboxaldehyde dimethyl acetal A7 and phenylacetylenetrifluoroborate S1. 4-(3-(3-chlorophenyl)-1-methoxyprop-2-yn-1-yl)benzonitrile (8c) was synthesized in an excellent 86% yield from (4-dimethoxymethyl)benzonitrile (A10) and 3-chlorophenylacetylenetrifluoroborate (S7). The yield of 8c was slightly lower when compared to the yield of 94% for product 1j, derived from (4-dimethoxymethyl)benzonitrile A10 and phenylacetylenetrifluoroborate S1, which followed the trend of decreasing reactivity for electron-deficient trifluoroborates.

Products 4b, 8a and 8b all bear carbonyl functional groups, with the highest yield of 88% observed for Methyl 4-(3-(3-chlorophenyl)-1-methoxyprop-2-yn-1-yl)benzoate (8b), prepared from 4-(dimethoxymethyl)methyl benzoate (A14) and 3-
chlorophenylacetylenetrifluoroborate (S7). 4-(3-(3-chlorophenyl)-1-ethoxyprop-2-yn-1-yl)Benzaldehyde (8a) was afforded in a 62% yield from 4-(diethoxymethyl)benzaldehyde A13 and 3-chlorophenylacetylenetrifluoroborate S7 in the presence of an unprotected aldehyde. Ketones were also compatible as seen with 1-(4-(1-methoxy-3-(naphthalen-1-yl)prop-2-yn-1-yl)phenyl)ethan-1-one (4b) derived from 1-(4-(dimethoxymethyl)phenyl)ethan-1-one A12 and naphthylethynyltrifluoroborate S3. Ester-bearing acetals appeared to be more reactive than acetals bearing aldehydes. All of these functional groups are rarely tolerated by known methods due to their electrophilicity. This tolerance eliminates the need for further protection/deprotection that usually accompanies chemical transformations in the presence of these functionalities.

Some trifluoroborate salts were not effective coupling partners for this methodology. (4-dimethoxymethyl)bromobenzene A4 yield 1d in an 89% yield. However, when using para-methoxyphenylacetylenetrifluoroborate S10, a 20% yield was obtained for 1-bromo-4-(1-methoxy-3-(4-methoxyphenyl)prop-2-yn-1-yl)benzene (9a). Though a decrease yield of 1-(3-(4-bromophenyl)-3-methoxyprop-1-yn-1-yl)-2-(trifluoromethyl)benzene (6a) to 71% was observed when using A4 and 2-trifluoromethylphenylacetylenetrifluoroborate (S5), it was not nearly as drastic as using trifluoroborates with strong electron-donating groups present. (4-dimethoxymethyl)nitrobenzene A9 afforded 1i in quantitative yields, but when using 3,5-ditrifluoromethylphenylacetylenetrifluoroborate (S9), a 29% yield of product 1-(3-methoxy-3-(4-nitrophenyl)prop-1-yn-1-yl)-3,5-bis(trifluoromethyl)benzene (10a) was obtained. The presence of two strong electron-withdrawing groups on the trifluoroborate greatly diminished product yields. Product 11a was not obtained from 3-fluorophenylacetylenetrifluoroborate S6 and acetal A21, bearing a primary alcohol. We suspect it could be due to the presence of a primary alcohol, which is also a nucleophile.
2.4.3 Application to 2-methoxytetrahydropyran

We then applied our methodology to a cyclic acetal 2-methoxytetrahydropyran, which yielded 30 % for 2-phenylacetylenetetrahydropyran (1p) leading to a minor optimization (Table 5). Increasing the equivalents of both acid and S1 to 1.5 equiv. resulted in an excellent 89 % yield (entry 2). A room temperature reaction with these equivalents resulted in a decrease of 1p, to 73 %.
Table 5: Optimization of cyclic acetal substrates.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Acid : S1 (equiv.)</th>
<th>Temp (°C)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1:1.1</td>
<td>-10</td>
<td>30 %</td>
</tr>
<tr>
<td>2</td>
<td>1.5:1.5</td>
<td>-10</td>
<td>89 %</td>
</tr>
<tr>
<td>3</td>
<td>1.5:1.5</td>
<td>RT</td>
<td>73 %</td>
</tr>
</tbody>
</table>

2.4.4 Reaction of acetals with alkenyltrifluoroborates

When applying this methodology to alkenyltrifluoroborates, the over-reactivity observed for (2-methyl)dimethoxymethylbenzene A3 and (4-dimethoxymethyl)anisole A16 was seen again (Figure 10). (4-dimethoxymethyl)bromobenzene A4 was overalkenylated using trans-styryltrifluoroborate, forming product 12a in a 32 % yield. Alkenyltrifluoroborates are generally less reactive than alkynyltrifluoroborates, but the formation of an allylic/benzylic carbocation after the addition of the first styryl group is very favourable. This promoted the addition of a second equivalent of nucleophile and resulted in solely dialkenylated products. Attempting to control this dialkenylation using the optimized conditions from Table 3 and (4-dimethoxymethyl)nitrobenzene A9 was unsuccessful. Product 13a was still obtained, showing sole dialkenylation, even at these low temperatures. A conversion of 35% was determined based on the recovery of starting material.

We then applied the optimized conditions for 2-methoxytetrahydropyran to react with trans-styryltrifluoroborate. To our delight we found that (E)-2-styryltetrahydro-2H-pyran (1q) was formed in a 51% yield (Scheme 24). Though only modest yielding, it was excellent to see our method working for an alkenyltrifluoroborate example.
Scheme 24: Reaction of 2-methoxytetrahydropyran with styryltrifluoroborate.

2.4.5 Conclusion of reactions between acetal and trifluoroborate

This methodology has a superior functional group tolerance compared to traditional alkynylmetal reagents or Lewis acid catalysis. Halogen functional groups on both acetals and trifluoroborates promoted the formation of the desired products and resulted in high yields. Electron-withdrawing nitro and nitrile acetals reacted in excellent yields. Various carbon oxidation states were tolerated, including aldehydes, ketones, esters and free carboxylic acids. Aldehydes and ketones are both competing electrophiles that may react to form undesired byproducts in alternative methods. Higher yields were observed for more oxidized carbonyl-functional groups, when comparing the results for products 4b, 8a and 8b. To our knowledge, this is also the first report of a free carboxylic acid being tolerated by a procedure for the alkynylation of acetals. This eliminates the need for protection/deprotection steps that are usually mandatory for these functional groups.

The current nucleophile scope of this methodology is mainly limited to alkynyltrifluoroborates, with one alkenyltrifluoroborate example. This is due to the reactivity of the products after the first step. Alkenyltrifluoroborates gave over-alkenylation products even when using electron withdrawn acetals. Though this is not the
desired product, these 3^0-carbon centers could have other potential applications as well. 2-methoxysubstituted epoxides did afford (E)-2-styrlytetrahydro-2H-pyran (1q) when reacted with trans-styrlytrifloroborate.

2.5 Alkynylation of ketals using alkynytrifluoroborates

With the great success of these reactions, specifically with 2-phenylacetylenetetrahydropyran 1p, we wanted to expand the scope of this methodology even further to include ketals. To the best of our knowledge, there has yet to be a method that allows for the alkynylation of ketals in literature. This would allow for the synthesis of 3^0-propargylic ethers and greatly expand the utility of this methodology.

2.5.1 Optimization of conditions for the alkynylation of ketals

We first applied the conditions optimized for acetal to 1,1-dimethoxycyclohexane (K1). This resulted in a modest 30 % yield of the desired product ((1-methoxycyclohexyl)ethynyl)benzene (14a) (Table 6, entry1). Increasing the equivalents of HBF$_4$·OEt$_2$ and S1 to 1.5 equiv. respectively resulted in an increase in yield to 48 % (entry 2). Further increase to 2.0 equiv of HBF$_4$·OEt$_2$ and S1 saw a drop in yield to 33 % (entry 3). Therefore, further reactions were done using 1.5 equiv. of HBF$_4$·OEt$_2$ and S1. Entry 4 showed that decreasing the reaction time to 15 minutes resulted in an increase in yield to 50 %. Changing the solvent to propionitrile showed a marginal increase in yield to 52 % (entry 5). Decreasing the reaction temperature to -40°C showed a slight increase in yield of 14a to 53 % (entry 6). As a result, further reactions were run for 15 min at -40°C in propionitrile.
Table 6: Optimization of conditions for alkynylation of ketals.

<table>
<thead>
<tr>
<th>entry</th>
<th>Temp (°C)</th>
<th>Solvent</th>
<th>HBF₄·OEt₂ : S₁ (equiv.)</th>
<th>Time (min)</th>
<th>Yield 14a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-10</td>
<td>CH₃CN</td>
<td>1.1 : 1.1</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>-10</td>
<td>CH₃CN</td>
<td>1.5 : 1.5</td>
<td>70</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>-10</td>
<td>CH₃CN</td>
<td>2.0 : 2.0</td>
<td>70</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>-10</td>
<td>CH₃CN</td>
<td>1.5 : 1.5</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>-10</td>
<td>CH₃CH₂CN</td>
<td>1.5 : 1.5</td>
<td>15</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>-40</td>
<td>CH₃CH₂CN</td>
<td>1.5 : 1.5</td>
<td>15</td>
<td>53</td>
</tr>
</tbody>
</table>

2.5.2 Reactions of various alkynyl trifluoroborates with ketals

Different trifluoroborate salts were screened with ketals (Figure 11). 1-chloro-3-((1-methoxycyclohexyl)ethynyl)benzene (14b) formed in a 51 % yield from 1,1-dimethoxycyclohexane (K₁) and 3-chlorophenylacetylenetrifluoroborate (S₇). This yield is comparable to the 53 % yield of ((1-methoxycyclohexyl)ethynyl)benzene (14a), using K₁ and phenylacetylenetrifluoroborate (S₁). The reaction of 4-t-butyl-1,1-dimethoxycyclohexane (K₂) and S₁ showed a slight increase in yield of ((4-(tert-butyl)-1-methoxycyclohexyl)ethynyl)benzene (15a) to 59 % compared to product 14a. Using bulky naphthylacetylenetrifluoroborate S₃ with K₂ resulted in a lower 47 % yield of 1-((4-(tert-butyl)-1-methoxycyclohexyl)ethynyl)naphthalene (15b). 3-fluorophenylacetylenetrifluoroborate (S₆) afforded 1-((4-(tert-butyl)-1-methoxycyclohexyl)ethynyl)-3-fluorobenzene (15c) from K₂ in a 62 % yield, which was comparable to the yield of 15a. No product formation was observed for the reactions between K₃ and S₁ or between K₄ and S₁ as seen in entries 16a and 17a respectively. 2′-bromoacetophenone dimethyl ketal K₄ is a sterically ketal, which could have prevented the reaction with the nucleophile.
2.5.3 Conclusions on alkynylation of ketals

The reactions of ketals with alkynyltrifluoroborates require more catalyst and trifluoroborate to achieve synthetically useful yields. Though yields are modest, to our knowledge this is the first report of a ketal alkynylation of any kind. These tertiary propargylic ethers products can be further transformed into allenes, which are very useful synthetic building blocks.36

2.6 Applications of products

Propargylic ethers can be transformed into a variety of different compounds (Scheme 25). The transformation of propargylic ethers into allenes is known, and proceeds through a β-alkoxide elimination (Step A, Scheme 25).36 Transformation B shows the formation of β-unsaturated ketones, which proceeds through a Meyer-Schuster
rearrangement. Other applications include cyclizations, and reactions with external nucleophiles.

\[
\begin{align*}
&\text{Scheme 25: Applications of propargylic ethers} \\
&\end{align*}
\]

2.7 Future work

2.7.1 Reaction of trifluoroborates with N,O-acetals for the synthesis of amines

A Brønsted acid reaction of N,O-acetals and trifluoroborates is a potential method for the synthesis of functionalized alkynylamines. N,O-acetals are prepared from aldehydes37 and application of our Brønsted acid catalyzed methodology will proceed through an iminium ion intermediate (Scheme 26).

\[
\begin{align*}
&\text{Scheme 26: Synthesis of propargylic amines from N,O-acetals} \\
&\end{align*}
\]
2.7.2 Reactions of trifluoroborates with glycosides

This methodology could be applied to the synthesis of C-glycosides (Scheme 26). Sugar acetylenes are useful building blocks for the synthesis of natural products. With the success of 2-phenylacetylenetetrahydropyran 1p, our method should transition smoothly to the synthesis of sugar acetylenes.

![Scheme 27: Synthesis of sugar acetylenes](image)

2.7.3 Single-pot dialkynylation

The formation of by-product 2a also gives an opportunity to explore the dialkynylation of acetals using two different trifluoroborate salts. Optimized conditions for (2-methyl)dimethoxymethylbenzene A3 can afford product 1c in high yields, which can be subsequently reacted with another equivalent of trifluoroborate (scheme 27). This can be potentially done with ease in one pot synthesis; with addition of trifluoroborate and warming of the reaction mixture.

![Scheme 28: Single-pot controlled dialkynylation to form tertiary-carbon centers](image)

2.8 General Conclusions

We have successfully developed a Brønsted acid catalyzed methodology for the synthesis of secondary and tertiary propargylic ethers using acetals/ ketals and trifluoroborates. This method tolerates various functional groups including halogens, nitro, nitrile,
aldehyde, ketone, ester and carboxylic acid bearing acetals (Figure 8, Figure 9). This substrate scope is far superior than current methods using Lewis acid catalysts. To our knowledge, this is the first Brønsted acid catalyzed methodology using alkynyltrifluoroborate salts as well as the first account of alkynylation of ketals.

Acetals react rapidly and atom economically to synthesized functionalized propargylic ethers, using very mild reaction conditions. A dialkynylated by-product was observed when electron-rich acetals were employed. This by-product can be suppressed in some instances using lower temperatures, as well using propionitrile as a solvent (Table 3).

Ketals react less efficiently than acetals. The reaction with ketals needed an excess of 1.5 equiv. of both HBF$_4$·OEt$_2$ and trifluoroborate respectively (Figure 11). Though yields are modest, the only method to synthesized tertiary propargylic ethers involves alkynyl lithium and aldehyde reagents.36 The developed methodology will facilitate access of tertiary propargylic ethers.

Propargylic ethers are useful synthetic intermediates. They can be converted into allenes, enones and other compounds (Scheme 25). This work may be applied to the synthesis of sugar alkynes and C-glycoside derivatives (Scheme 27). Finally, the synthesis of amines from N,O-acetals is also another attractive future direction (Scheme 26).

Chapter 3: Experimental Procedures

3.1 **General Information**

All reactions were carried out in oven dried 5 mL vials under Ar$(_{(g)}$) unless otherwise noted. THF and triethylamine were obtained from a solvent purification system. Anhydrous acetonitrile and methanol were purchased from Sigma-Aldrich and were used without further manipulation. Other commercially available reagents were used as received. Deuterated solvents CDCl$_3$ and d$_6$-DMSO were purchased from Cambridge Isotope Laboratories, Inc. and used for NMR characterization. NMR spectra were collected at 25°C on an Oxford AS400 NMR. 1H-NMR and 19F-NMR spectra were collected at 400 MHz and 376 MHz respectively while 13C-NMR and 11B-NMR were collected at 100
MHz and 128 MHz respectively. All chemical shifts are expressed in ppm values. 11B-NMR, 13C-NMR and 19F-NMR are all {1H}-decoupled. High resolution mass spectra (HRMS) were obtained by the University of Michigan, Department of Chemistry using atmospheric-pressure chemical ionization (APCI) and Waters VG 70-250-S magnetic sector mass spectrometer was used for samples analyzed by electron impact ionization (EI). An Agilent Q-TOF mass spectrometer was used for ESI analysis. FT-IR spectra were recorded on a Nicolet Avatar 370 DTGS spectrometer and partial data is provided. Automated flash chromatography was done using the Biotage Isolera$^{\text{TM}}$ or Grace Reveleris$^{\text{®}}$ X2 flash chromatography systems. Manual Flash chromatography was done using silica gel (60 Å, low acidity silica, from EMD Chemicals Inc.) was performed using reagent grade solvents.

3.2 Acetal and ketal synthesis

![Scheme 29: Synthesis of acetals and ketals.](image)

3.2.1 General procedure for acetal and ketal synthesis (Procedure 1)

A solution of aldehyde or ketone (5.0 mmol, 1 equiv.) in 10.0 mL of anhydrous methanol in a 20 mL vial was cooled to 0°C under Ar(g). TiCl$_4$ (1.0 M in CH$_2$Cl$_2$, 250 µL, 5.0 mol %) was slowly added to the solution at 0°C. The solution was allowed to warm to room temperature and stirred for 15 mins. Triethylamine (415 µL, 60.0 mol %) was then added to solution and stirring was continued for 15 mins. The bulk reaction was suspended into diether ether (75 mL) and was washed with water (5 x 15 mL), dried over MgSO$_4$ and evaporated under reduced pressure. No further purification was undertaken. Characterization data of acetals and ketals are included in the Appendix.

3.3 Synthesis of alkynyltrifluoroborates

![Scheme 30: Synthesis of potassium alkynyltrifluoroborate salts.](image)
3.3.1 General procedure for the synthesis of alkynyltrifluoroborates
(Procedure 2)

A solution of terminal alkyne (1.0 equiv.) in dry THF was cooled to -70°C under Ar\(_{(g)}\) atmosphere. \(n\)-BuLi (1.0 equiv.) was added dropwise to the solution. The reaction was stirred for 1 h at -70°C. Trimethylborate (1.5 equiv.) was added dropwise at -60°C then stirred at this temperature for 2 h. The solution was warmed to -20°C and then a saturated KHF\(_2\)\((aq.)\) solution (6 equiv.) was added. The solution was allowed to warm-up to room temperature with vigorous stirring over 2 h. The solvent was removed under reduced pressure at 50°C, and the resulting solid was placed under vacuum for 12 h to remove residual water. The solid was washed with hot acetone (4 x 10 mL), which was collected and concentrated to a volume of ~5 mL. The product was precipitated with diethyl ether (30 mL) and collected via vacuum filtration. The crystalline trifluoroborate salt was washed with ether (10 mL) then dried under vacuum.

3.4 General Procedure for the reaction of acetics and alkynyltrifluoroborates

\[
\begin{align*}
\text{OMe} & \quad \text{OMe} \quad + \quad \text{R}^2 \quad \text{BF}_3\text{K} \quad \text{HBF}_4\cdot\text{OEt}_2 \quad (1.1 \text{ eq.}) \\
\text{CH}_3\text{CN, -10}\text{°C, 15 min} & \quad \text{OMe} \quad \text{R}^1 \quad \text{R}^2
\end{align*}
\]

Scheme 31: Alkynylation of acetals using alkynyltrifluoroborates

3.4.1 alkynylation of acetics with trifluoroborates (procedure 3)

All reactions were carried out in an oven dried 5 mL vial purged with Ar\(_{(g)}\) with a micro stir bar (3 x 10mm). First, the indicated potassium trifluoroborate salt (1.1 equiv.) was added to the vial followed by acetonitrile (1.0 mL). The acetal (1.0 equiv.) was then added to the solution, and the solution was stirred at -10°C for two minutes. HBF\(_4\)\cdot\text{OEt}_2 (1.1 equiv.) was added to the stirring solution at -10°C, and the solution was stirred for 15 minutes at -10°C. The reaction mixture was quenched with ethyl acetate. The crude product was extracted using 25 mL of ethyl acetate. The organic layer was washed with water (2 x 10 mL) and brine (1 x 10 mL). The organic layer was dried over MgSO\(_4\), concentrated under vacuum. The product was purified by flash column chromatography using a hexane/diethyl ether mobile phase.
3.5 General Procedure for the reaction of ketals and alkynyltrifluoroborates

\[
\text{MeO} \quad \text{OMe} \quad \underset{R^1}{\text{R}^2} \quad + \quad \underset{\text{(1.1 eq.)}}{\text{BF}_3\text{K}} \quad \xrightarrow{\text{HBF}_4\cdot\text{OEt}_2 \ (1.1 \text{ eq.})} \quad \underset{\text{MeO}}{\text{R}^2} \quad \underset{R^1}{\text{R}^3}
\]

Scheme 32: Alkynylation of ketals using alkynyltrifluoroborates

3.5.1 alkynylation of ketals with trifluoroborates (procedure 4)

All reactions were carried out in an oven dried 5 mL vial purged with Ar(g) with a micro stir bar (3 x 10mm). First, the indicated potassium trifluoroborate salt (1.5 equiv.) was added to the vial followed by acetonitrile (1.0 mL). The acetal (1.0 equiv.) was then added to the solution, and the solution was stirred at -10°C for two minutes. HBF₄·OEt₂ (1.5 equiv.) was added to the stirring solution at -10°C, and the solution was stirred for 15 minutes at -10°C. The reaction mixture was quenched with ethyl acetate. The crude product was extracted using 25 mL of ethyl acetate. The organic layer was washed with water (2 x 10 mL) and brine (1 x 10 mL). The organic layer was dried over MgSO₄, concentrated under vacuum. The product was purified by flash column chromatography using a hexane/diethyl ether mobile phase.
References

Appendix

Synthesis of (Dimethoxymethyl)benzene (A2)

Benzaldehyde (508 μL, 5.0 mmol), TiCl₄ ([1.0 M] in CH₂Cl₂, 250 μL, 5.0 mol %) and triethylamine (415 μL, 60.0 mol %) in 10.0 mL of methanol following procedure 1, afforded A2 (0.7075 g, 91%) as a clear colourless oil.

¹H-NMR: (CDCl₃, 400 MHz): δ 7.48-7.45 (m, 2H), 7.40-7.33 (m, 3H), 5.41 (s, 1H), 3.34 (s, 6H)

¹³C-NMR: (CDCl₃, 100 MHz): δ 138.02, 128.37, 128.12, 126.62, 103.11, 52.61

Synthesis of (Dimethoxymethyl)-2-methylbenzene (A3)

2-methylbenzaldehyde (596 μL, 5.0 mmol), TiCl₄ ([1.0 M] in CH₂Cl₂, 250 μL, 5.0 mol %) and triethylamine (415 μL, 60.0 mol %) in 10.0 mL of methanol following procedure 1, afforded A3 (0.7703 g, 92%) as a clear red oil.

¹H-NMR: (CDCl₃, 400 MHz): δ 7.55-7.53 (m, 1H), 7.24-7.15 (m, 3H), 5.46 (s, 1H), 3.33 (s, 6H), 2.38 (s, 3H)

¹³C-NMR: (CDCl₃, 100 MHz): δ 136.23, 135.64, 130.50, 128.34, 126.51, 125.39, 101.78, 53.00, 18.85

Synthesis of 1-chloro-4-(Dimethoxymethyl)benzene (A5)
4-chlorobenzaldehyde (725 μL, 5.0 mmol), TiCl₄ ([1.0 M] in CH₂Cl₂, 250 μL, 5.0 mol %) and triethylamine (415 μL, 60.0 mol %) in 10.0 mL of methanol following procedure 1, afforded A₅ (0.9159 g, 98%) as a clear yellow oil.

¹H-NMR: (CDCl₃, 400 MHz): δ 7.40-7.37 (m, 2H), 7.35-7.32 (m, 2H), 5.37 (s, 1H), 3.31 (s, 6H)

¹³C-NMR: (CDCl₃, 100 MHz): δ 136.62, 134.23, 128.35, 128.15, 102.27, 52.54

Synthesis of 2,6-dichloro-4-(Dimethoxymethyl)benzene (A₆)

2,6-dichlorobenzaldehyde (884 μL, 5.0 mmol), TiCl₄ ([1.0 M] in CH₂Cl₂, 250 μL, 5.0 mol %) and triethylamine (415 μL, 60.0 mol %) in 10.0 mL of methanol following procedure 1, afforded A₆ (1.032 g, 93%) as a clear yellow oil.

¹H-NMR: (CDCl₃, 400 MHz): δ 7.30 (d, J = 8.2 Hz 2H), 7.16 (dd, J = 8.6, 7.4 Hz, 1H), 5.85 (s, 1H), 3.48 (s, 6H)

¹³C-NMR: (CDCl₃, 100 MHz): δ 134.99, 132.74, 129.91, 129.33, 103.97, 55.95

Synthesis of (Dimethoxymethyl)cyclopentane (A₇)

Cyclopentanecarboxaldehyde (551 μL, 5.0 mmol), TiCl₄ ([1.0 M] in CH₂Cl₂, 250 μL, 5.0 mol %) and triethylamine (415 μL, 60.0 mol %) in 10.0 mL of methanol following procedure 1, afforded A₇ (0.5440 g, 77%) as a clear yellow oil.

¹H-NMR: (CDCl₃, 400 MHz): δ 4.08 (d, J = 8.2 Hz, 1H), 3.31 (s, 6H), 2.19 (m, 1H), 1.73-1.66 (m, 2H), 1.60-1.49 (m, 4H), 1.37-1.31 (m, 2H)
Synthesis of (E)-1,1-dimethoxyhex-2-ene (A8)

2-hexenal (592 μL, 5.0 mmol), TiCl₄ ([1.0 M] in CH₂Cl₂, 250 μL, 5.0 mol %) and triethylamine (415 μL, 60.0 mol %) in 10.0 mL of methanol following procedure 1, afforded A8 (0.3450 g, 48%) as a clear yellow oil.

¹H-NMR: (CDCl₃, 400 MHz): δ 5.86-5.79 (m, 1H), 5.44 (ddt, J = 15.6, 5.5, (2x1.6) Hz, 1H), 4.71 (d, J = 5.1 Hz, 1H), 3.31 (s, 6H), 2.09-2.03 (m, 2H), 1.48-1.38 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H)

¹³C-NMR: (CDCl₃, 100 MHz): δ 135.55, 126.51, 103.45, 52.61, 31.14, 22.00, 13.63

Synthesis of (Dimethoxymethyl)-4-nitrobenzene (A9)

4-Nitrobenzaldehyde (0.7632 g, 5.0 mmol), TiCl₄ ([1.0 M] in CH₂Cl₂, 250 μL, 5.0 mol %) and triethylamine (415 μL, 60.0 mol %) in 10.0 mL of methanol following procedure 1, afforded A9 (0.8824 g, 90%) as a clear yellow oil.

¹H-NMR: (CDCl₃, 400 MHz): δ 8.21 (d, J = 8.6 Hz, 2H), 7.63 (d, J = 8.6 Hz, 2H), 5.46 (s, 1H), 3.33 (s, 6H)

¹³C-NMR: (CDCl₃, 100 MHz): δ 147.99, 145.07, 127.80, 123.40, 101.55, 52.69

Synthesis of 4-(dimethoxymethyl)benzonitrile (A10)
4-Formylbenzonitrile (0.6900 g, 5.0 mmol), TiCl$_4$ ([1.0 M] in CH$_2$Cl$_2$, 250 μL, 5.0 mol %) and triethylamine (415 μL, 60.0 mol %) in 10.0 mL of methanol following procedure 1, afforded A10 (0.8397 g, 94%) as a clear yellow oil.

1H-NMR: (CDCl$_3$, 400 MHz): δ 7.64-7.62 (m, 2H), 7.55-7.53 (m, 2H), 5.39 (s, 1H), 3.29 (s, 6H)

13C-NMR: (CDCl$_3$, 100 MHz): δ 143.20, 132.02, 127.55, 118.63, 112.25, 101.72, 52.67

Synthesis of 4-(dimethoxymethyl)benzoic acid (A11)

4-Formylbenzoic acid (0.7739 g, 5.0 mmol), TiCl$_4$ ([1.0 M] in CH$_2$Cl$_2$, 250 μL, 5.0 mol %) and triethylamine (415 μL, 60.0 mol %) in 10.0 mL of methanol following procedure 1, using ethyl acetate as the organic phase for extraction, which afforded A11 (0.7620 g, 78%) as a white crystalline solid.

1H-NMR: (CDCl$_3$, 400 MHz): δ 8.13 (d, J = 8.2 Hz, 2H), 7.58 (d, J = 8.2 Hz, 2H), 5.47 (s, 1H), 3.34 (s, 6H)

13C-NMR: (CDCl$_3$, 100 MHz): δ 171.80, 143.85, 130.16, 129.34, 126.93, 102.25, 52.67

Synthesis of 1-(4-(dimethoxymethyl)phenyl)ethan-1-one (A12)

4-Acetylbenzaldehyde (0.7637 g, 5.0 mmol), TiCl$_4$ ([1.0 M] in CH$_2$Cl$_2$, 250 μL, 5.0 mol %) and triethylamine (415 μL, 60.0 mol %) in 10.0 mL of methanol following procedure 1, using ethyl acetate as the organic phase for extraction, which afforded A12 (0.8714 g, 90%) as a clear yellow oil.

1H-NMR: (CDCl$_3$, 400 MHz): δ 7.94 (d, J = 8.6 Hz, 2H), 7.53 (d, J = 8.2 Hz, 2H), 5.42 (s, 1H), 3.31 (s, 6H), 2.58 (s, 3H)
$^{13}\text{C-}NMR$: (CDCl$_3$, 100 MHz): δ 197.76, 143.07, 137.10, 128.22, 126.97, 102.28, 52.66, 26.64

Synthesis of Methyl 4-(dimethoxymethyl)benzoate (A14)

![Methyl 4-(dimethoxymethyl)benzoate](image)

Methyl(4-formylbenzoate) (0.8291 g, 5.0 mmol), TiCl$_4$ ([1.0 M] in CH$_2$Cl$_2$, 250 μL, 5.0 mol %) and triethylamine (415 μL, 60.0 mol %) in 10.0 mL of methanol following procedure 1, which afforded A14 (0.8110 g, 77%) as a clear yellow oil.

$^1\text{H-NMR}$: (CDCl$_3$, 400 MHz): δ 8.01 (d, $J = 8.6$ Hz, 2H), 7.49 (dd, $J = 8.6$, 0.8 Hz, 2H), 5.40 (s, 1H), 3.88 (s, 3H), 3.29 (s, 6H)

$^{13}\text{C-NMR}$: (CDCl$_3$, 100 MHz): δ 166.74, 142.91, 130.15, 129.45, 126.74, 102.27, 52.56, 52.02

Synthesis of 1-dimethoxymethyl-4-methoxybenzene (A16)

![1-dimethoxymethyl-4-methoxybenzene](image)

4-Methoxybenzaldehyde (0.6808 g, 5.0 mmol), TiCl$_4$ ([1.0 M] in CH$_2$Cl$_2$, 250 μL, 5.0 mol %) and triethylamine (415 μL, 60.0 mol %) in 10.0 mL of methanol following procedure 1, which afforded A16 (0.6469 g, 71%) as a clear yellow oil.

$^1\text{H-NMR}$: (CDCl$_3$, 400 MHz): δ 7.35 (d, $J = 8.6$ Hz, 2H), 6.90 (d, $J = 8.6$ Hz, 2H), 5.35 (s, 1H), 3.80 (s, 3H), 3.31 (s, 6H)

$^{13}\text{C-NMR}$: (CDCl$_3$, 100 MHz): δ 130.36, 127.90, 114.29, 113.51, 103.04, 55.22, 52.56
Synthesis of 1-dimethoxymethyl-3,4-methoxybenzene (A17)

\[
\begin{array}{c}
\text{MeO} \\
\text{MeO} \\
\text{OMe} \\
\text{OMe}
\end{array}
\]

3,4-dimethoxybenzaldehyde (0.8309 g, 5.0 mmol), TiCl\(_4\) ([1.0 M] in CH\(_2\)Cl\(_2\), 250 μL, 5.0 mol %) and triethylamine (415 μL, 60.0 mol %) in 10.0 mL of methanol following procedure 1, which afforded A17 (0.7641 g, 72%) as a clear yellow oil.

\(^1\text{H-NMR:}\) (CDCl\(_3\), 400 MHz): δ 6.98-6.96 (m, 2H), 6.84 (d, \(J = 8.60\), 1H), 5.31 (s, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.31 (s, 6H)

\(^{13}\text{C-NMR:}\) (CDCl\(_3\), 100 MHz): δ 149.04, 148.87, 130.78, 119.17, 110.56, 109.46, 103.19, 56.14, 55.86, 52.72

Synthesis of 2-(dimethoxymethyl)furan (A18)

\[
\begin{array}{c}
\text{MeO} \\
\text{MeO}
\end{array}
\]

Furan-2-carboxaldehyde (0.4805 g, 5.0 mmol), TiCl\(_4\) ([1.0 M] in CH\(_2\)Cl\(_2\), 250 μL, 5.0 mol %) and triethylamine (415 μL, 60.0 mol %) in 10.0 mL of methanol following procedure 1, which afforded A18 (0.5402 g, 76%) as a clear colourless oil.

\(^1\text{H-NMR:}\) (CDCl\(_3\), 400 MHz): δ 7.40 (d, \(J = 2.0\), 0.8 Hz, 1H), 6.42-6.41 (m, 1H), 6.36 (dd, \(J = 3.3\), 1.8 Hz, 1H), 5.34 (s, 1H), 3.35 (s, 6H)

\(^{13}\text{C-NMR:}\) (CDCl\(_3\), 100 MHz): δ 150.86, 142.45, 109.99, 108.41, 97.96, 52.82

Synthesis of (E)-(3,3-dimethoxyprop-1-en-1-yl)benzene (A19)

\[
\begin{array}{c}
\text{OMe} \\
\text{OMe}
\end{array}
\]
Cinnamylaldehyde (0.6608 g, 5.0 mmol), TiCl$_4$ ([1.0 M] in CH$_2$Cl$_2$, 250 μL, 5.0 mol %) and triethylamine (415 μL, 60.0 mol %) in 10.0 mL of methanol following procedure 1, which afforded A19 (0.6060 g, 64%) as a clear colourless oil.

1H-NMR: (CDCl$_3$, 400 MHz): δ 7.44-7.41 (m, 2H), 7.35-7.32 (m, 2H), 7.29-7.27 (m, 1H), 6.74 (d, J = 16.4 Hz, 1H), 6.17 (dd, J = 16.0, 5.1 Hz, 1H), 4.97 (dd, J = 4.9, 1.0 Hz, 1H), 3.39 (s, 6H)

13C-NMR: (CDCl$_3$, 100 MHz): δ 136.11, 133.57, 128.59, 128.11, 126.74, 125.73, 102.91, 52.71

Synthesis of 1,1-dimethoxycyclohexane (K1)

Cyclohexanone (491 μL, 5.0 mmol), TiCl$_4$ ([1.0 M] in CH$_2$Cl$_2$, 250 μL, 5.0 mol %) and triethylamine (415 μL, 60.0 mol %) in 10.0 mL of methanol following procedure 1, which afforded K1 (0.4075 g, 57%) as a clear yellow oil.

1H-NMR: (CDCl$_3$, 400 MHz): δ 3.12 (s, 6H), 1.59-1.56 (m, 4H), 1.44 (dt, J = 11.6, 5.2 Hz, 4H), 1.37-1.34 (m, 2H)

13C-NMR: (CDCl$_3$, 100 MHz): δ 99.87, 47.21, 32.63, 25.55, 22.77

Synthesis of 4-(t-butyl)-1,1-dimethoxycyclohexane (K2)

Cyclohexanone (771.3 mg, 5.0 mmol), TiCl$_4$ ([1.0 M] in CH$_2$Cl$_2$, 250 μL, 5.0 mol %) and triethylamine (415 μL, 60.0 mol %) in 10.0 mL of methanol following procedure 1, which afforded K2 (0.6221 g, 62%) as a clear colourless oil.
Synthesis of Potassium trifluoro(phenylethynyl)borate (S1):

Phenylacetylene (1.04 g, 10.0 mmol, 1.0 equiv.) was added to 32 mL of dry THF and then cooled to -80°C. n-BuLi (4.0 mL, [2.5 M in hexane], 10.0 mmol, 1.0 equiv) was added dropwise and the solution was stirred for 1 h at this temperature. B(OMe)₃ (1.56 g, 15.0 mmol, 1.5 equiv) was added dropwise at -80°C and then stirred for 2 h at this temperature. Aqueous KHF₂ (4.69 g, 60.0 mmol, 6 equiv.) was added at -20°C then stirred vigorously for 2 h, where it was allowed to warm to room temperature. The solvent was removed under reduced pressure at 50°C, and the resulting solid was placed under vacuum overnight to remove remaining water. The solid was washed with hot acetone (4 x 10 mL), which was collected and concentrated to a volume of ~5 mL. The product was precipitated with diethyl ether (30 mL) and collected by suction filtration. The crystalline trifluoroborate salt was washed with ether (10 mL) then placed under vacuum to remove remaining diethyl ether. S1 (1.343 g, 65 %) was obtained as a crystalline white solid.

1H-NMR: (D₆-DMSO, 400 MHz): δ 7.28-7.26 (m, 4H), 7.24-7.21 (m, 1H)

13C-NMR: (D₆-DMSO, 100 MHz): δ 130.92, 128.24, 126.69, 125.52 (sp carbons are not observed)

19F-NMR: (D₆-DMSO): δ -131.71 (s, 3F)

11B-NMR: (D₆-DMSO): δ -1.55 (s, 1B)
Synthesis of Potassium trifluoro((4-biphenyl)ethynyl)borate (S2)

\[
\begin{array}{c}
\text{Ph} \quad \text{Ph} \quad \equiv \quad \text{BF}_3\text{K}
\end{array}
\]

4-ethynylbiphenyl (1.00 g, 5.44 mmol, 1.0 equiv.), \(n\)-BuLi (2.18 mL, [2.5 M in hexane], 5.44 mmol, 1.0 equiv.), B(OMe)\(_3\) (0.85 g, 8.16 mmol, 1.5 equiv.) and aqueous KHF\(_2\) (2.54 g, 32.7 mmol, 6.0 equiv.) in 17.0 mL of THF following Procedure 2, afforded S2 (0.201 g, 13 %) as an off white solid.

\(^1\text{H-NMR:}\) (D\(_6\)-DMSO, 400 MHz): \(\delta 7.64\) (d, \(J = 7\) Hz, 2H), 7.58 (d, \(J = 8.6\) Hz, 2H), 7.44 (t, \(J = 7.6\), 2H), 7.37-7.32 (m, 3H)

\(^{13}\text{C-NMR:}\) (D\(_6\)-DMSO, 100 MHz): \(\delta 139.52, 138.28, 131.51, 128.94, 127.46, 126.48, 126.45, 124.66\) (sp carbons are not observed)

\(^{19}\text{F-NMR:}\) (D\(_6\)-DMSO): \(\delta -131.70\) (s, 3F)

\(^{11}\text{B-NMR:}\) (D\(_6\)-DMSO): \(\delta -1.22\) (s, 1B)

HRMS (ESI/M-): \(\text{C}_{14}\text{H}_9\text{BF}_3\): calculated: 245.0755, found: 245.0757

Synthesis of Potassium trifluoro((4-naphthyl)ethynyl)borate (S3)

\[
\begin{array}{c}
\text{Ph} \quad \text{Ph} \quad \equiv \quad \text{BF}_3\text{K}
\end{array}
\]

1-ethynynaphthalene (0.880 g, 5.44 mmol, 1.0 equiv.), \(n\)-BuLi (2.18 mL, [2.5 M in hexane], 5.44 mmol, 1.0 equiv.), B(OMe)\(_3\) (0.85 g, 8.16 mmol, 1.5 equiv.) and aqueous KHF\(_2\) (2.54 g, 32.7 mmol, 6.0 equiv.) in 17.0 mL of THF following Procedure 2, afforded S3 (0.8762 g, 62 %) as a slightly pink solid.

\(^1\text{H-NMR:}\) (D\(_6\)-DMSO, 400 MHz): \(\delta 8.32\) (d, \(J = 8.2\) Hz, 1H), 7.89 (d, \(J = 7.8\) Hz, 1H), 7.80 (d, \(J = 8.2\) Hz, 1H), 7.57-7.50 (m, 3H), 7.42 (t, \(J = 15.2\) Hz, 1H)
13C-NMR: (D_6-DMSO, 100 MHz): δ 132.93, 132.80, 128.95, 128.09, 126.88, 126.29, 126.23, 126.13, 125.52, 123.10 (sp carbons are not observed)

19F-NMR: (D_6-DMSO): δ -131.46 (s, 3F)

11B-NMR: (D_6-DMSO): δ -1.56 (s, 1B)

HRMS (ESI/M-): $C_{12}H_7BF_3$: calculated: 219.0598, found: 219.0601

Synthesis of Potassium trifluoro((4-butyphenyl)ethynyl)borate (S4)

$\begin{array}{cc}
\text{\(\text{BF}_3\text{K}\)} & \text{\(\text{\(\text{BF}_3\text{K}\)}\)} \\
\end{array}$

1-butyl-4-ethynylbenzene (3.00 g, 18.0 mmol, 1.0 equiv.), n-BuLi (1.15 g, 18.0 mmol, 1.0 equiv.), B(OMe)$_3$ (2.81 g, 27.0 mmol, 1.5 equiv.) and aqueous KHF$_2$ (8.46 g, 108 mmol, 6.0 equiv.) in 50.0 mL of THF following Procedure 2, afforded S4 (2.609 g, 55 %) as a white crystalline solid.

1H-NMR: (D_6-DMSO, 400 MHz): δ 7.19 (d, $J = 8.20$ Hz, 2H), 7.09 (d, $J = 7.8$ Hz, 2H), 2.54 (t, $J = 7.5$ Hz, 2H), 1.54-1.48 (m, 2H), 1.30-1.22 (m, 2H), 0.88 (t, $J = 7.23$ Hz, 3H)

13C-NMR: (D_6-DMSO, 100 MHz): δ 140.9, 130.8, 128.2, 122.8, 34.6, 32.9, 21.7, 13.8 (sp carbons are not observed)

19F-NMR: (D_6-DMSO): δ -131.6 (s, 3F)

11B-NMR: (D_6-DMSO): δ -1.67 (s, 1B)

HRMS (ESI/M-): $C_{12}H_7BF_3$: calculated: 225.1068, found: 225.1065

Synthesis of Potassium trifluoro(((2-trifluoromethyl)phenyl)ethynyl)borate (S5)

$\begin{array}{cc}
\text{\(\text{CF}_3\)} & \text{\(\text{\(\text{CF}_3\)}\)} \\
\end{array}$
1-Ethynyl-2-trifluoromethylbenzene (1.00 g, 5.70 mmol, 1.0 equiv.), n-BuLi (2.28 mL, [2.5 M in hexane], 5.70 mmol, 1.0 equiv.), B(OMe)$_3$ (0.90 g, 8.55 mmol, 1.5 equiv.) and aqueous KHF$_2$ (2.67 g, 34.2 mmol, 6.0 equiv.) in 17.0 mL of THF following Procedure 2, afforded S5 (0.8790 g, 56 %) as a crystalline white solid.

1H-NMR: (D$_6$-DMSO, 400 MHz): δ 7.65 (d, $J = 9.2$ Hz, 1H), 7.54 (m, 2H), 7.41 (t, $J = 16.3$ Hz, 1H)

13C-NMR: (D$_6$-DMSO, 100 MHz): δ 134.08, 132.03, 129.37 (q, $J = 88.95$ Hz), 126.85, 125.46 (q, $J = 16.65$ Hz), 125.08 (q, $J = 546.73$ Hz) (sp carbons are not observed)

19F-NMR: (D$_6$-DMSO): δ -60.85 (s, 3F), -132.09 (s, 3F)

11B-NMR: (D$_6$-DMSO): δ -1.61 (s, 1B)

HRMS (ESI/M-): C$_9$H$_4$BF$_6$: calculated: 237.0316, found: 237.0318

Synthesis of Potassium trifluoro((3-fluorophenyl)ethynyl)borate (S6)

![Image of the compound]

1-Ethynyl-3-fluoro-benzene (0.667 g, 5.44 mmol, 1.0 equiv.), n-BuLi (2.18 mL, [2.5 M in hexane], 5.44 mmol, 1.0 equiv.), B(OMe)$_3$ (0.85 g, 8.16 mmol, 1.5 equiv.) and aqueous KHF$_2$ (2.54 g, 32.6 mmol, 6.0 equiv.) in 17.0 mL of THF following Procedure 2, afforded S6 (1.0380 g, 84 %) as a crystalline white solid.

1H-NMR: (D$_6$-DMSO, 400 MHz): δ 7.35-7.30 (m, 1H), 7.14-7.07 (m, 3H)

13C-NMR: (D$_6$-DMSO, 100 MHz): δ 163.04, 160.62, 130.28 (d, $J = 9.2$ Hz), 127.32 (d, $J = 3.1$ Hz), 117.38 (d, $J = 22$ Hz), 114.01 (d, $J = 22$ Hz) (sp carbons are not observed)

19F-NMR: (D$_6$-DMSO): δ -113.49 (s, 1F), -131.97 (s, 3F)

11B-NMR: (D$_6$-DMSO): δ -1.56 (s, 1B)

HRMS (ESI/M-): C$_8$H$_4$BF$_4$: calculated: 187.0348, found: 187.0348
Synthesis of Potassium trifluoro((3-chlorophenyl)ethynyl)borate (S7)

Cl

\[\text{BF}_3K \]

1-Chloro-3-ethynyl-benzene (0.44 g, 3.25 mmol, 1.0 equiv.), t-BuLi (0.21 g, 3.25 mmol, 1.0 equiv.), B(OMe)\textsubscript{3} (0.51 g, 4.87 mmol, 1.5 equiv.) and aqueous KHF\textsubscript{2} (1.52 g, 19.5 mmol, 6.0 equiv.) in 10.0 mL of THF afforded product S4 (0.4597 g, 59 % yield) as a white crystalline solid.

1H-NMR: (D\textsubscript{6}-DMSO, 400 MHz): δ 7.30-7.28 (m, 3H), 7.26-7.22 (m, 1H)

13C-NMR: (D\textsubscript{6}-DMSO, 100 MHz): δ 132.84, 130.30, 130.14, 129.70, 127.42, 126.90 (sp carbons are not observed)

19F-NMR: (D\textsubscript{6}-DMSO): δ -131.98 (s, 3F)

11B-NMR: (D\textsubscript{6}-DMSO): δ -1.58 (s, 1B)

HRMS (ESI/M-): C\textsubscript{8}H\textsubscript{4}BClF\textsubscript{3}: calculated: 203.0052, found: 203.0054

Synthesis of Potassium trifluoro((3,4-di chlorophenyl)ethynyl)borate (S8)

Cl

\[\text{BF}_3K \]

1,2-dichloro-4-ethynyl-benzene (0.9212 g, 5.19 mmol, 1.0 equiv.), \textit{n}-BuLi (2.08 mL, [2.5 M in hexane], 5.19 mmol, 1.0 equiv.), B(OMe)\textsubscript{3} (0.81 g, 8.50 mmol, 1.5 equiv.) and aqueous KHF\textsubscript{2} (2.66 g, 21.3 mmol, 6.0 equiv.) in 17.0 mL of THF following Procedure 2, afforded S8 (0.6175 g, 43 %) as a crystalline white solid.

1H-NMR: (D\textsubscript{6}-DMSO, 400 MHz): δ 7.52-7.49 (m, 2H), 7.26 (dd, \textit{J} = 8.2, 2.0 Hz, 1H)

13C-NMR: (D\textsubscript{6}-DMSO, 100 MHz): δ 132.84, 131.67, 131.42, 130.97, 130.90, 126.44, 109.99 (sp carbons are not observed)
Synthesis of Potassium trifluoroo((3,5-bis(trifluoromethyl)phenyl)ethynyl)borate (S9)

\[
\begin{align*}
\text{F}_3\text{C} & \equiv \text{BF}_3\text{K} \\
\text{F}_3\text{C}
\end{align*}
\]

3,5-Bis(trifluoromethyl)phenylacetylene (0.961 g, 4.03 mmol, 1.0 equiv.), \(n\)-BuLi (1.61 mL, [2.5 M in hexane], 3.5 mmol, 1.0 equiv.), \(\text{B(OMe)}_3\) (0.63 g, 6.05 mmol, 1.5 equiv.) and aqueous \(\text{KHF}_2\) (1.90 g, 21.3 mmol, 6.0 equiv.) in 12.2 mL of THF following **Procedure 2**, afforded S9 (0.4444 g, 32 %) as a crystalline white solid.

1H-NMR: (D\(_6\)-DMSO, 400 MHz): \(\delta 7.92-7.90\) (m, 3H)

13C-NMR: (D\(_6\)-DMSO, 100 MHz): \(\delta 131.75, 131.47, 131.14, 130.81, 130.49, 128.33, 127.53, 124.82, 122.10, 120.50\) (m), 119.39 (\(sp\) carbons are not observed)

19F-NMR: (D\(_6\)-DMSO): \(\delta -61.63\) (s,6F), -132.41 (s, 3F)

11B-NMR: (D\(_6\)-DMSO): \(\delta -0.57, -1.75\) (s, 1B)

HRMS (ESI/M-): \(\text{C}_8\text{H}_3\text{BCl}_2\text{F}_3\): calculated: 236.9662, found: 236.9664

Synthesis of Potassium trifluoro((4-methoxy)phenyl)ethynyl)borate (S10)

\[
\begin{align*}
\text{MeO} & \equiv \text{BF}_3\text{K} \\
\end{align*}
\]

4-ethynylanisole (1.00 g, 7.34 mmol, 1.0 equiv.), \(n\)-BuLi (0.470 g, [2.5 M in hexane], 7.34 mmol, 1.0 equiv.), \(\text{B(OMe)}_3\) (1.14 g, 11.0 mmol, 1.5 equiv.) and aqueous \(\text{KHF}_2\)
(3.462 g, 44.3 mmol, 6.0 equiv.) in 25.0 mL of THF following **Procedure 2**, afforded **S10** (2.609 g, 55 %) as a crystalline white solid.

\(^1\)H-NMR: (D\(_6\)-DMSO, 400 MHz): \(\delta 7.22\) (dt, \(J = 9.0, 2.5, 2\)H), 6.84 (dt, \(J = 9.0, 2.0, \)Hz, 2H), 3.73 (s, 3H)

\(^{13}\)C-NMR: (D\(_6\)-DMSO, 100 MHz): \(\delta 158.0, 132.2, 117.7, 113.9, 55.0\) (sp carbons are not observed)

\(^{19}\)F-NMR: (D\(_6\)-DMSO): \(\delta -131.5\) (s, 3F)

\(^{11}\)B-NMR: (D\(_6\)-DMSO): \(\delta -1.67\) (s, 1B)

HRMS (ESI/M-): C\(_9\)H\(_7\)OB\(_F\)_3: calculated: 199.0548, found: 199.0543

(3-methoxybut-1-yne-1,4-diyldibenzene (1a)

\[
\begin{align*}
\text{OMe} & \quad \text{Ar} \\
\end{align*}
\]

Derived from (2,2-dimethoxyethyl)benzene (A1) (16.6 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro(phenylethynyl)borate (S1) (22.9 mg, 0.11 mmol, 1.1 equiv.) and HBF\(_4\)∙OEt\(_2\) (15.1 \(\mu\)L, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile at 0\(^\circ\)C, following **Procedure 3**. Purification by silica gel chromatography using hexanes/diethyl ether (19:1) afforded product 1a (20.9 mg, 89% yield) as a yellow oil.

FT-IR: \(\nu 2925.90, 1489.56, 1338.29, 1096.67, 753.66, 689.58\) cm\(^{-1}\)

\(^1\)H-NMR: (CDCl\(_3\), 400 MHz) \(\delta 7.43-7.40\) (m, 2H), 7.35-7.30 (m, 7H), 7.28-7.26 (m, 1H), 4.38 (t, \(J = 6.6\) Hz, 1H), 3.49 (s, 3H), 3.18-3.06 (m, 2H)

\(^{13}\)C-NMR: (CDCl\(_3\), 100 MHz) \(\delta 137.28, 131.67, 129.69, 128.33, 128.24, 128.19, 126.61, 122.70, 87.55, 86.75, 72.72, 56.63, 42.22\)

49
HRMS: C_{17}H_{16}O: calculated: 236.1201, found: 236.1204

(3-methoxyprop-1-yne-1,3-diyl)dibenzene (1b)

\[\text{OMe} \]

Derived from (dimethoxymethyl)benzene (A2) (15.2 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro(phenylethynyl)borate (S1) (22.9 mg, 0.11 mmol, 1.1 equiv.) and HBF₄·OEt₂ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile following Procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (9:1) afforded product 1b (18.5 mg, 83% yield) as a yellow oil.

FT-IR: ν 2926.86, 1489.37, 1330.13, 1072.31, 745.45, 689.33 cm⁻¹

\(^{1}H\)-NMR: (CDCl₃, 400 MHz) δ 7.61-7.58 (m, 2H), 7.51-7.49 (m, 2H), 7.43-7.37 (m, 3H), 7.36-7.32 (m, 3H), 5.33 (s, 1H), 3.51 (s, 3H)

\(^{13}C\)-NMR: (CDCl₃, 100 MHz) δ 138.53, 131.79, 128.51, 128.44, 128.28, 127.50, 122.55, 87.74, 86.65, 73.50, 55.93 (only 11 peaks observed)

(1-methoxy-3-phenylprop-2-yn-1-yl)-2-methylbenzene (1c)

\[\text{OMe} \]

Derived from (Dimethoxymethyl)-2-methylbenzene (A3) (16.6 mg, 0.10 mmol, 1.0 equiv.). Potassium trifluoro(phenylethynyl)borate (S1) (22.9 mg, 0.11 mmol, 1.1 equiv.) and HBF₄·OEt₂ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of propionitrile at -40°C for 1 h, following Procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (19:1) afforded product 1c (22.7 mg, 96% yield) as a red oil.
FT-IR: ν 2959.24, 1488.84, 1076.27, 753.27, 740.85, 689.73 cm⁻¹

¹H-NMR: (CDCl₃, 400 MHz) δ 7.70-7.68 (m, 1H), 7.51-7.49 (m, 2H), 7.34-7.32 (m, 3H), 7.27-7.22 (m, 3H), 5.44 (s, 1H), 3.53 (s, 3H), 2.49 (s, 3H)

¹³C-NMR: (CDCl₃, 100 MHz) δ 136.45, 136.38, 131.76, 130.71, 128.45, 128.27, 127.67, 126.01, 122.67, 87.56, 86.52, 71.57, 56.15, 19.01 (only 14 peaks observed)

1-bromo-4-(1-methoxy-3-phenylprop-2-yn-1-yl)benzene (1d)

Derived from 1-bromo-4-(Dimethoxymethyl)benzene (A4) (23.6 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro(phenylethynyl)borate (S1) (22.9 mg, 0.11 mmol, 1.1 equiv.) and HBF₄·OEt₂ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile, following Procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (12:1) afforded product 1d (26.7 mg, 89% yield) as a yellow oil.

FT-IR: ν 2927.39, 1487.40, 1069.62, 1011.56, 754.66, 689.79 cm⁻¹

¹H-NMR: (CDCl₃, 400 MHz) δ 7.54-7.45 (m, 6H), 7.34-7.32 (m, 3H), 5.28 (s, 1H), 3.50 (s, 3H)

¹³C-NMR: (CDCl₃, 100 MHz) δ 137.65, 131.78, 131.62, 129.12, 128.68, 128.32, 122.45, 122.28, 88.05, 86.04, 72.78, 55.97

HRMS: C₁₆H₁₃BrO: calculated: 300.0150, found: 300.0151

1-chloro-4-(1-methoxy-3-phenylprop-2-yn-1-yl)benzene (1e)
Derived from 1-bromo-4-(Dimethoxymethyl)benzene (A5) (23.6 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro(phenylethynyl)borate (S1) (22.9 mg, 0.11 mmol, 1.1 equiv.) and HBF$_4$·OEt$_2$ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile, which was stirred for 70 min, following Procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (12:1) afforded product 1e (20.5 mg, 80% yield) as a yellow oil.

FT-IR: ν 2927.48, 1488.38, 1079.94, 821.85, 754.23, 689.57 cm$^{-1}$

1H-NMR: (CDCl$_3$, 400 MHz) δ 7.53-7.48 (m, 4H), 7.38-7.32 (m, 5H), 5.29 (s, 1H), 3.50 (s, 3H)

13C-NMR: (CDCl$_3$, 100 MHz) δ 137.12, 134.26, 131.78, 128.81, 128.66, 128.32, 122.29, 88.03, 86.11, 72.75, 55.96 (only 11 peaks observed)

HRMS: C$_{16}$H$_{13}$ClO: calculated: 256.0655, found: 256.0653

1,3-dichloro-2-(1-methoxy-3-phenylprop-2-yn-1-yl)benzene (1f)

![Chemical Structure](image)

Derived from 1,3-dichloro-2-(dimethoxymethyl)benzene (A6) (22.1 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro(phenylethynyl)borate (S1) (22.9 mg, 0.11 mmol, 1.1 equiv.) and HBF$_4$·OEt$_2$ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile, following Procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (14:1) afforded product 1f (18.7 mg, 64% yield) as a clear, colourless oil.

FT-IR: ν 2926.27, 1484.70, 1094.01, 1080.70, 753.71, 720.14, 689.14 cm$^{-1}$

1H-NMR: (CDCl$_3$, 400 MHz) δ 7.48-7.46 (m, 2H), 7.36-7.34 (m, 2H), 7.32-7.29 (m, 3H), 7.20 (dd, J = 8.6, 7.5 Hz, 1H), 6.06 (s, 1H), 3.50 (s, 3H)
13C-NMR: (CDCl$_3$, 100 MHz) δ 135.69, 133.34, 131.87, 129.86, 129.24, 128.54, 128.21, 122.55, 87.10, 84.94, 69.35, 56.82

HRMS: C$_{16}$H$_{12}$Cl$_2$O: calculated: 290.0265, found: 290.0262

(3-cyclopentyl-3-methoxyprop-1-yn-1-yl)benzene (1g)

\[
\text{OMe} \quad \text{Ph}
\]

Derived from (dimethoxymethyl)cyclopentane (A7) (14.4 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro(phenylethynyl)borate (S1) (22.9 mg, 0.11 mmol, 1.1 equiv.) and HBF$_4$·OEt$_2$ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile, following Procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (19:1) afforded product 1g (20.6 mg, 96% yield) as a yellow oil.

FT-IR: ν 2950.82, 2866.71, 1489.25, 1443.8, 1086.07, 754.20, 689.47 cm$^{-1}$

1H-NMR: (CDCl$_3$, 400 MHz) δ 7.46-7.44 (m, 2H), 7.37-7.26 (m, 3H), 4.04 (d, $J = 7.0$ Hz, 1H), 3.48 (s, 3H), 2.37-2.24 (m, 1H), 1.89-1.74 (m, 2H), 1.68-1.65 (m, 2H), 1.61-1.48 (m, 4H)

13C-NMR: (CDCl$_3$, 100 MHz) δ 131.72, 128.22, 128.17, 122.97, 87.71, 85.86, 75.97, 56.72, 44.42, 29.17, 28.67, 25.77, 25.68

HRMS: C$_{15}$H$_{18}$O: calculated: 214.1358, found: 214.1356

(E)-(3-methoxyoct-4-en-1-yn-1-yl)benzene (1h)

\[
\text{OMe} \quad \text{Ph}
\]

Derived from (E)-1,1-dimethoxyhex-2-ene (A8) (14.4 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro(phenylethynyl)borate (S1) (22.9 mg, 0.11 mmol, 1.1 equiv.) and HBF$_4$·OEt$_2$ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile, following
Procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (19:1) afforded product 1h (10.4 mg, 49% yield) as a clear, colourless oil.

FT-IR: ν 2958.27, 2928.96, 2871.12, 1489.84, 1124.27, 1093.82, 956.31, 755.06, 689.78 cm⁻¹

¹H-NMR: (CDCl₃, 400 MHz) δ 7.45-7.43 (m, 2H), 7.33-7.30 (m, 3H), 6.07 (dd, J = 16, 7.4 Hz, 1H), 5.87 (d, J = 16 Hz, 1H), 3.63 (q, J = 6.9 Hz, 1H), 3.31 (s, 3H), 1.63-1.55 (m, 1H), 1.52-1.47 (m, 1H), 1.43-1.37 (m, 2H), 0.93 (t, J = 7.0 Hz, 3H)

¹³C-NMR: (CDCl₃, 100 MHz) δ 144.00, 131.49, 128.28, 128.18, 123.21, 111.58, 89.76, 87.30, 81.71, 56.57, 37.44, 18.47, 13.98

HRMS: C₁₅H₁₈O: calculated: 214.1358, found: 214.1364

(1-methoxy-3-phenylprop-2-yn-1-yl)-4-nitrobenzene (1i)

![Chemical structure of 1i](image)

Derived from (dimethoxymethyl)-4-nitrobenzene (A9) (19.7 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro(phenylethynyl)borate (S1) (22.9 mg, 0.11 mmol, 1.1 equiv.) and HBF₄•OEt₂ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile, following Procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (6.5:1) afforded product 1i (26.8 mg, 100% yield) as a yellow solid.

FT-IR: ν 2929.61, 1518.74, 1345.93, 1078.02, 877.93, 755.19, 727.39, 689.4 cm⁻¹

¹H-NMR: (CDCl₃, 400 MHz) δ 8.25(d, J = 8.6 Hz, 2H), 7.76 (d, J = 8.6 Hz, 2H), 7.51-7.47 (m, 2H), 7.37-7.31 (m, 3H), 5.40 (s, 1H), 3.56 (s, 3H)

¹³C-NMR: (CDCl₃, 100 MHz) δ 147.86, 145.69, 131.81, 128.95, 128.40, 128.06, 123.73, 121.89, 88.79, 85.21, 72.42, 56.38

HRMS: C₁₆H₁₃NO₃: calculated: 267.0895, found: 267.0892
4-(1-methoxy-3-phenylprop-2-yn-1-yl)benzonitrile (1j)

Derived from 4-(dimethoxymethyl)benzonitrile (A10) (17.7 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro(phenylethynyl)borate (S1) (22.9 mg, 0.11 mmol, 1.1 equiv.) and HBF₄·OEt₂ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile, following Procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (4:1) afforded product 1j (23.1 mg, 94% yield) as a clear, yellow oil.

FT-IR: ν 2930.59, 2227.96, 1488.98, 1077.21, 755.31, 699.80, 565.52 cm⁻¹

¹H-NMR: (CDCl₃, 400 MHz) δ 7.69 (s, 4H), 7.49-7.47 (m, 2H), 7.36-7.32 (m, 3H), 5.35 (s, 1H), 3.54 (s, 3H)

¹³C-NMR: (CDCl₃, 100 MHz) δ 143.78, 132.35, 131.80, 128.92, 128.38, 127.94, 121.95, 118.63, 112.21, 88.67, 85.28, 72.65, 56.31

HRMS: C₁₇H₁₃NO: calculated: 247.0997, found: 247.0996

4-(1-methoxy-3-phenylprop-2-yn-1-yl)benzoic acid (1k)

Derived from 4-(dimethoxymethyl)benzoic acid (A11) (19.6 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro(phenylethynyl)borate (S1) (41.6 mg, 0.20 mmol, 2.0 equiv.) and HBF₄·OEt₂ (20.5 μL, 0.15 mmol, 1.5 equiv.) in 1.0 mL of acetonitrile, which was stirred for 80 min, following Procedure 3. Purification by silica gel chromatography using CH₂Cl₂/methanol (gradient: 100:0 to 9:1) afforded product 1k (19.4 mg, 73% yield) as a yellow solid.
FT-IR: ν 2922.65, 2889.72, 1684.10, 1286.50, 1077.90, 755.16, 731.44, 550.82 cm⁻¹

¹H-NMR: (CDCl₃, 400 MHz) δ 8.16 (d, J = 8.2 Hz, 2H), 7.70 (d, J = 8.2 Hz, 2H), 7.51-7.49 (m, 2H), 7.35-7.33 (m, 3H), 5.39 (s, 1H), 3.54 (s, 3H)

¹³C-NMR: (CDCl₃, 100 MHz) δ 144.40, 131.82, 130.49, 128.75, 128.34, 127.41, 122.20, 88.35, 85.81, 72.94, 56.15 (Only 12 peaks observed)

HRMS: [M-H]-C₁₇H₁₃O₃: calculated: 265.0870, found: 265.0872

2-(phenylethynyl)tetrahydro-2H-pyran (1p)

![2-(phenylethynyl)tetrahydro-2H-pyran](image)

Derived from (2-methoxy)tetrahydropyran (A15) (11.6 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro(phenylethynyl)borate (S1) (31.2 mg, 0.15 mmol, 1.5 equiv.) and HBF₄·OEt₂ (20.6 μL, 0.15 mmol, 1.5 equiv.) in 1.0 mL of acetonitrile, which was stirred for 70 min, following Procedure 3. Purification by silica gel chromatography using hexane/diethyl ether (19:1) afforded product 1p (16.6 mg, 89% yield) as a clear colourless oil.

¹H-NMR: (CDCl₃, 400 MHz) δ 7.47-7.43 (m, 2H), 7.31-7.28 (m, 3H), 4.51 (dd, J = 7.6, 2.9 Hz, 1H), 4.07-4.03 (m, 1H), 3.61-3.56 (m, 1H), 1.96-1.90 (m, 2H), 1.83-1.76 (m, 1H), 1.65-1.56 (m, 4H)

¹³C-NMR: (CDCl₃, 100 MHz) δ 131.74, 128.25, 128.18, 122.75, 88.11, 85.18, 67.44, 66.62, 32.18, 25.68, 21.81

(E)-2-styryltetrahydro-2H-pyran (1q)

![E)-2-styryltetrahydro-2H-pyran](image)
Derived from (2-methoxy)tetrahydropyran (A15) (11.6 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro(phenylethenyl)borate (31.5 mg, 0.15 mmol, 1.5 equiv.) and HBF₄·OEt₂ (20.6 μL, 0.15 mmol, 1.5 equiv.) in 1.0 mL of acetonitrile, which was stirred for 80 min, following Procedure 3. Purification by silica gel chromatography using hexane/diethyl ether (19:1) afforded product 1q (9.6 mg, 51% yield) as a clear colourless oil.

¹H-NMR: (CDCl₃, 400 MHz) δ 7.39-7.37 (m, 2H), 7.32-7.19 (m, 3H), 6.61-6.57 (m, 1H), 6.21 (dd, J = 16, 5.9 Hz, 1H), 4.09-4.05 (m, 1H), 4.00-3.96 (m, 1H), 3.58-3.52 (m, 1H), 1.92-1.89 (m, 1H), 1.77-1.73 (m, 1H), 1.66-1.49 (m, 4H)

¹³C-NMR: (CDCl₃, 100 MHz) δ 137.02, 130.64, 129.73, 128.46, 127.40, 126.39, 78.02, 68.42, 32.23, 25.87, 23.44

(3-(o-tolyl)penta-1,4-diyne-1,5-diyl)dibenzene (2a)

Derived from (dimethoxymethyl)-2-methylbenzene (A3) (16.6 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro(phenylethynyl)borate (S1) (22.9 mg, 0.11 mmol, 1.1 equiv.) and HBF₄·OEt₂ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile for 70 mins following Procedure 3. Purification by silica gel chromatography using Hexane/diethyl ether (9:1) afforded product 2a (6.4 mg, 21% yield) as a clear yellow oil.

¹H-NMR: (CDCl₃, 400 MHz) δ 7.48-7.36 (m, 4H), 7.32-7.28 (m, 10H), 5.23 (s, 1H), 2.57 (s, 3H)

¹³C-NMR: (CDCl₃, 100 MHz) δ 136.11, 135.87, 131.76, 130.79, 128.18, 128.16, 127.70, 127.64, 126.46, 123.03, 86.29, 82.42, 28.21, 19.34
(3-(4-methoxyphenyl)penta-1,4-diyne-1,5-diyl)dibenzene (2b)

Derived from 1-dimethoxymethyl-4-methoxybenzene (A16) (18.2 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro(phenylethynyl)borate (S1) (22.9 mg, 0.11 mmol, 1.1 equiv.) and HBF₄·OEt₂ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of propionitrile at -40°C for 15 min, following Procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (19:1) afforded product 2b (15.8 mg, 49% yield) as a clear colourless oil.

¹H-NMR: (CDCl₃, 400 MHz) δ 7.60 (d, J = 8.2 Hz, 2H), 7.50-7.48 (m, 4H), 7.32-7.31 (m, 5H), 6.94 (d, J = 8.6 Hz, 3H), 5.17 (s, 1H), 3.83 (s, 3H)

¹³C-NMR: (CDCl₃, 100 MHz) δ 159.00, 131.79, 128.37, 128.19, 123.02, 114.10, 86.91, 82.58, 55.35, 29.33

4-(3-((1,1'-biphenyl)-4-yl)-1-methoxyp-2-yn-1-yl)benzonitrile (3a)

Derived from 4-(dimethoxymethyl)benzonitrile (A10) (17.7 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro((4-biphenyl)ethynyl)borate (S2) (31.3 mg, 0.11 mmol, 1.1 equiv.) and HBF₄·OEt₂ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile, following Procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (9:1) afforded product 3a (24.2 mg, 75% yield) as a white solid.

FT-IR: ν 2925.59, 2226.74, 1282.95, 1073.92, 842.24, 818.01, 763.73, 553.85 cm⁻¹
1H-NMR: (CDCl$_3$, 400 MHz) δ 7.73-7.69 (m, 4H), 7.60-7.56 (m, 6H), 7.48-7.44 (m, 2H), 7.40-7.36 (m, 1H), 5.38 (s, 1H), 3.56 (s, 3H)

13C-NMR: (CDCl$_3$, 100 MHz) δ 143.79, 141.71, 140.11, 132.38, 132.25, 128.90, 127.96, 127.81, 127.03, 120.79, 118.65, 112.23, 109.99, 88.57, 85.94, 72.72, 56.35

HRMS: C$_{23}$H$_{17}$NO: calculated: 323.1310, found: 323.1313

1-(3-methoxy-3-(4-nitrophenyl)prop-1-yn-1-yl)naphthalene (4a)

Derived from (dimethoxymethyl)-4-nitrobenzene (A9) (19.7 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro((4-naphthyl)ethynyl)borate (S3) (28.4 mg, 0.11 mmol, 1.1 equiv.) and HBF$_4$·OEt$_2$ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile, following Procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (gradient: 100:0 → 3:1) afforded product 4a (25.4 mg, 80% yield) as a yellow oil.

FT-IR: ν 2989.32, 1518.03, 1344.35, 1096.21, 1075.71, 798.60, 771.46, 743.12, 704.59 cm$^{-1}$

1H-NMR: (CDCl$_3$, 400 MHz) δ 8.30-8.26 (m, 3H), 7.88-7.82 (m, 4H), 7.74 (dd, $J = 7.0$, 1.2 Hz, 1H), 7.58-7.54 (m, 2H), 7.45 (dd, $J = 8.2$, 7.0 Hz, 1H), 5.56 (s, 1H), 3.65 (s, 3H)

13C-NMR: (CDCl$_3$, 100 MHz) δ 147.91, 145.78, 133.24, 133.14, 131.01, 129.48, 128.43, 128.12, 127.07, 126.56, 125.75, 125.14, 123.81, 119.51, 90.07, 86.98, 72.68, 56.52

HRMS: C$_{20}$H$_{15}$NO$_3$: calculated: 317.1052, found: 317.1054
1-(4-(1-methoxy-3-(naphthalen-1-yl)prop-2-yn-1-yl)phenyl)ethan-1-one (4b)

Derived from 1-(4-(dimethoxymethyl)phenyl)ethan-1-one (A12) (19.4 mg, 0.10 mmol, 1.0 equiv.), potassium trifluoro((4-naphthyl)ethynyl)borate (S3) (28.4 mg, 0.11 mmol, 1.1 equiv.) and HBF₄·OEt₂ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile, following procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (3:1) afforded product 4b (24.7 mg, 79% yield) as a viscous, yellow oil.

FT-IR: ν 2947.13, 1681.09, 1263.82, 1096.45, 1075.60, 955.19, 798.61, 771.70, 594.33 cm⁻¹

¹H-NMR: (CDCl₃, 400 MHz) δ 8.30 (dd, J = 8.2, 0.8 Hz, 1H), 8.02 (dd, J = 8.2, 2.0 Hz, 2H), δ 7.86 (dd, J = 7.0, 1.2 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 7.73 (dd, J = 7.0, 1.2 Hz, 1H), 7.57-7.52 (m, 2H), 7.44 (dd, J = 8.2, 7.0 Hz, 1H), 5.53 (s, 1H), 3.62 (s, 3H), 2.63 (s, 3H)

¹³C-NMR: (CDCl₃, 100 MHz) δ 197.69, 143.74, 137.11, 133.29, 133.13, 130.89, 129.25, 128.66, 128.36, 127.55, 126.98, 126.49, 125.91, 125.14, 119.85, 90.79, 86.46, 73.19, 56.30, 26.71

HRMS: C₁₈H₂₀O₂ calculated: 314.1307, found: 314.1304

1-butyl-4-(3-(4-chlorophenyl)-3-methoxyprop-1-yn-1-yl)benzene (5a)
Derived from 1-chloro-4-(dimethoxymethyl)benzene (A5) (18.7 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro((4-butylphenyl)ethynyl)borate (S4) (29.1 mg, 0.11 mmol, 1.1 equiv.) and HBF₄·OEt₂ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile, at -40°C, following procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (9:1) afforded product 5a (26.9 mg, 86% yield) as a yellow oil.

FT-IR: ν 2955.79, 2928.27, 2857.90, 1508.76, 1489.27, 1085.67, 1015.36, 819.60, 532.01 cm⁻¹

¹H-NMR: (CDCl₃, 400 MHz) δ 7.52 (d, J = 8.2 Hz, 2H), 7.39-7.35 (m, 4H), 7.14 (d, J = 8.6 Hz, 2H), 5.29 (s, 1H), 3.49 (s, 3H), 2.61 (t, J = 7.8 Hz, 2H), 1.61-1.57 (m, 2H), 1.35 (dq, J = 14.9, 7.4 Hz, 2H), 0.93 (t, J = 7.4, 3H)

¹³C-NMR: (CDCl₃, 100 MHz) δ 143.86, 137.26, 134.19, 131.70, 128.83, 128.63, 128.44, 119.40, 88.29, 85.38, 72.77, 55.89, 35.57, 33.36, 22.27, 13.90

HRMS: C₂₀H₂₁ClO: calculated: 312.1281, found: 312.1281

1-(3-(4-bromophenyl)-3-methoxyprop-1-yn-1-yl)-2-(trifluoromethyl)benzene (6a)

![Structure of 6a](image)

Derived from 1-bromo-4-(dimethoxymethyl)benzene (A4) (23.6 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro((2-trifluoromethyl)phenyl)ethynyl)borate (S5) (29.1 mg, 0.11 mmol, 1.1 equiv.) and HBF₄·OEt₂ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile, following Procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (gradient: 100:0 → 2:1) afforded product 6a (26.2 mg, 71% yield) as a viscous, yellow oil.

FT-IR: ν 2947.36, 1725.08, 1589.90, 1312.98, 1274.84, 1167.85, 1127.42, 1109.46, 1068.63, 133.26, 101.93, 759.11 cm⁻¹
\(^{1}\text{H-NMR}\): (CDCl\(_3\), 400 MHz) δ 7.66 (dddt, J = 21, 7.6, 1.4, 0.6 Hz, 2H), 7.54-7.42 (m, 6H), 5.33 (s, 1H), 3.51 (s, 3H)

\(^{13}\text{C-NMR}\): (CDCl\(_3\), 100 MHz) δ 137.15, 134.20, 131.83, 131.63, 131.53, 131.43 (d, J = 1.5 Hz), 129.13, 128.47, 125.86 (q, J = 5.4 Hz), 122.54, 122.09, 120.53 (d, J = 1.5 Hz), 109.99, 91.81, 83.90, 72.67, 55.90

HRMS: C\(_{17}\)H\(_{12}\)BrF\(_3\)O: calculated: 368.0024, found: 368.0036

1-(3-cyclopentyl-3-methoxyprop-1-yn-1-yl)-3-fluorobenzene (7a)

\[
\begin{align*}
 &\text{OMe} \\
 \text{Cyclopentyl} &\text{F}
\end{align*}
\]

Derived from (dimethoxymethyl)cyclopentane (A7) (14.4 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro((3-fluorophenyl)ethynyl)borate (S6) (24.9 mg, 0.11 mmol, 1.1 equiv.) and HBF\(_4\)∙OEt\(_2\) (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile, following procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (19:1) afforded product 7a (18.9 mg, 81% yield) as a clear, colourless oil.

FT-IR: ν 2952.03, 2846.42, 1609.3, 1579.88, 1486.23, 1169.74, 1149.34, 1096.27, 870.03, 782.35, 681.05 cm\(^{-1}\)

\(^{1}\text{H-NMR}\): (CDCl\(_3\), 400 MHz) δ 7.29-7.19 (m, 2H), 7.13 (ddd, J = 9.4, 2.5, 1.4 Hz, 1H), 7.02 (tdd, J = 8.4, 2.7, 1.2 Hz, 1H), 4.02 (d, J = 7.0 Hz, 1H), 3.47 (s, 3H), 2.35-2.25 (m, 1H), 1.85-1.81 (m, 2H), 1.69-1.61 (m, 2H), 1.59-1.55 (m, 2H), 1.53-1.47 (m, 2H)

\(^{13}\text{C-NMR}\): (CDCl\(_3\), 100 MHz) δ 162.31 (d, J = 246 Hz), 129.80 (d, J = 9.2 Hz), 127.59 (d, J = 3.7 Hz), 124.73, 118.52 (d, J = 22 Hz), 115.53 (d, J = 22 Hz), 88.81, 84.64 (d, J = 3.1 Hz), 75.88, 56.79, 44.34, 29.14, 28.66, 25.74, 25.66

HRMS: C\(_{15}\)H\(_{17}\)FO: calculated: 232.1263, found: 232.1259
4-(3-(3-chlorophenyl)-1-ethoxyprop-2-yn-1-yl)Benzaldehyde (8a)

![Structure of 8a]

Derived from 4-(diethoxymethyl)benzaldehyde (A13) (21.5 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro((3-chlorophenyl)ethyl)borate (S7) (26.7 mg, 0.11 mmol, 1.1 equiv.) and HBF₄·OEt₂ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile, following procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (19:1) afforded product 8a (18.3 mg, 62% yield) as a clear, colourless oil.

FT-IR: ν 2957.35, 2831.47, 1699.59, 1607.59, 1303.53, 1206.16, 1075.46, 839.69, 811.77, 782.41, 680.53 cm⁻¹

¹H-NMR: (CDCl₃, 400 MHz) δ 10.04 (s, 1H), 7.91 (d, J = 8.2 Hz, 2H), 7.74 (d, J = 8.2 Hz, 2H), 7.46 (t, J = 1.8 Hz, 1H), 7.36-7.30 (m, 2H), 7.27-7.23 (m, 1H), 3.85 (dq, J = 9.0, 7.0 Hz, 1H), 3.64 (dq, J = 9.0, 7.0 Hz, 1H), 1.31 (t, J = 7.0 Hz, 3H)

¹³C-NMR: (CDCl₃, 100 MHz) δ 191.79, 145.27, 136.31, 134.19, 131.67, 130.00, 129.91, 129.56, 129.02, 127.79, 123.91, 87.62, 86.45, 71.24, 64.52, 15.14

HRMS: C₁₈H₁₅ClO₂: calculated: 298.0761, found: 298.0752

Methyl 4-(3-(3-chlorophenyl)-1-methoxyprop-2-yn-1-yl)benzoate (8b)

![Structure of 8b]

Derived from methyl 4-(dimethoxymethyl)benzoate (A14) (21.0 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro((3-chlorophenyl)ethyl)borate (S7) (26.7 mg, 0.11 mmol, 1.1 equiv.) and HBF₄·OEt₂ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile,
following **procedure 3**. Purification by silica gel chromatography using hexanes/diethyl ether (6.5:1) afforded product 8b (27.7 mg, 88% yield) as a crystalline, white solid.

FT-IR: \(\nu \) 2944.14, 2887.21, 1726.03, 1436.73, 1273.87, 1186.08, 1085.76, 999.45, 783.19, 748.84, 705.60, 675.13 cm\(^{-1}\)

\(^1\)H-NMR: (CDCl\(_3\), 400 MHz) \(\delta \) 8.07 (d, \(J = 8.2 \) Hz, 2H), 7.63 (d, \(J = 8.2 \) Hz, 2H), 7.47 (t, \(J = 1.8 \) Hz, 1H), 7.37-7.30 (m, 2H), 7.27-7.25 (m, 1H), 5.34 (s, 1H), 3.92(s, 3H), 3.51 (s, 3H)

\(^13\)C-NMR: (CDCl\(_3\), 100 MHz) \(\delta \) 166.70, 145.27, 143.13, 134.19, 131.67, 130.25, 129.91, 129.88, 129.57, 129.01, 127.23, 123.92, 87.26, 72.77, 56.25, 52.15

HRMS: C\(_{18}\)H\(_{15}\)ClO\(_3\): calculated: 314.0710, found: 314.0706

4-(3-(3-chlorophenyl)-1-methoxyprop-2-yn-1-yl)benzonitrile (8c)

![Structure of 4-(3-(3-chlorophenyl)-1-methoxyprop-2-yn-1-yl)benzonitrile (8c)](image)

Derived from 4-(dimethoxymethyl)benzonitrile (A\(_{10}\)) (17.7 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro((3-chlorophenylethynyl)borate (S\(_7\)) (26.7 mg, 0.11 mmol, 1.1 equiv.) and HBF\(_4\)-OEt\(_2\) (15.1 \(\mu \)L, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile, following **Procedure 3**. Purification by silica gel chromatography using hexanes/diethyl ether (gradient: 100:0 to 3:1) afforded product 8c (24.2 mg, 86% yield) as a crystalline, white solid.

FT-IR: \(\nu \) 2976.57, 2899.41, 2229.05, 1407.17, 1078.07, 1010.04, 872.89, 785.70, 676.98 cm\(^{-1}\)

\(^1\)H-NMR: (CDCl\(_3\), 400 MHz) \(\delta \) 7.71-7.66 (m, 4H), 7.46 (t, \(J = 1.8 \) Hz, 1H), 7.37-7.33 (m, 2H), 7.28-7.24 (m, 1H), 5.33 (s, 1H), 3.53 (s, 3H)
13C-NMR: (CDCl$_3$, 100 MHz) δ 143.46, 134.25, 132.40, 131.67, 129.91, 129.63, 129.21, 127.86, 123.62, 118.57, 112.33, 87.12, 86.58, 72.56, 56.44

HRMS: C$_{17}$H$_{12}$ClNO: calculated: 281.0607, found: 281.0602

1-bromo-4-(1-methoxy-3-(4-methoxyphenyl)prop-2-yn-1-yl)benzene (9a)

![Image of 9a structure]

Derived from 1-bromo-4-(Dimethoxymethyl)benzene (A4) (23.6 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro((4-methoxyphenyl)ethynyl)borate (S10) (26.2 mg, 0.11 mmol, 1.1 equiv.) and HBF$_4$$\cdotOEt_2$ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile for 70 min, following Procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (9:1) afforded product 9a (6.6 mg, 20% yield) as a yellow oil.

1H-NMR: (CDCl$_3$, 400 MHz) δ 7.53-7.51 (m, 2H), 7.46-7.40 (m, 4H), 6.86-6.83 (m, 2H), 5.25 (s, 1H), 3.82 (s, 3H), 3.48 (s, 3H)

13C-NMR: (CDCl$_3$, 100 MHz) δ 137.85, 133.26, 131.58, 129.12, 122.35, 114.34, 113.94, 91.35, 84.64, 72.85 , 55.29, 10.35

1-(3-methoxy-3-(4-nitrophenyl)prop-1-yn-1-yl)-3,5-bis(trifluoromethyl)benzene (10a)

![Image of 10a structure]
Derived from (dimethoxymethyl)-4-nitrobenzene (A9) (19.7 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro((3,5-bis(trifluoromethyl)phenyl)ethynyl)borate (S9) (37.8 mg, 0.11 mmol, 1.1 equiv.) and HBF$_4$∙OEt$_2$ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile for 70 min, following Procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (3:1) afforded product 10a (11.7 mg, 29% yield) as a yellow liquid.

1H-NMR: (CDCl$_3$, 400 MHz) δ 8.29-8.27 (m, 2H), 7.90-7.85 (m, 3H), 7.74-7.42 (m, 2H), 5.39 (s, 1H), 3.57 (s, 3H)

13C-NMR: (CDCl$_3$, 100 MHz) δ 148.05, 144.78, 132.12 (q, $J = 34$ Hz), 131.79-131.67 (m), 131.61, 127.90, 124.15 (d, $J = 6.9$ Hz), 123.92, 86.99, 85.37, 72.27, 56.79

((1E,4E)-3-(4-bromophenyl)penta-1,4-diene-1,5-diyl)dibenzene (12a)

![Chemical structure](image)

Derived from 1-bromo-4-(dimethoxymethyl)benzene (A4) (23.6 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro(trans-styryl)borate (23.1 mg, 0.11 mmol, 1.1 equiv.) and HBF$_4$∙OEt$_2$ (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of acetonitrile for 70 min, following Procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (19:1) afforded product 12a (14.0 mg, 37% yield) as a yellow oil.

1H-NMR: (CDCl$_3$, 400 MHz) δ 7.49-7.19 (m, 15H), 6.52-6.40 (m, 4H), 4.39-4.35 (m, 1H)

13C-NMR: (CDCl$_3$, 100 MHz) δ 142.48, 141.74, 137.05, 136.23, 132.76, 131.69, 131.60, 131.24, 131.13, 130.97, 129.91, 129.65, 128.69, 128.57, 128.54, 128.09, 127.82, 127.48, 127.39, 126.74, 126.29, 126.28, 121.00, 51.63, 50.98
((1E,4E)-3-(4-nitrophenyl)penta-1,4-diene-1,5-diyl)dibenzene (13a)

\[
\text{Ph} = \text{Ph}
\]

\[
\text{NO}_2
\]

Derived from (dimethoxymethyl)-4-nitrobenzene (A9) (19.7 mg, 0.10 mmol, 1.0 equiv) Potassium trifluoro(trans-styryl)borate (23.1 mg, 0.11 mmol, 1.1 equiv.) and HBF\textsubscript{4}·OEt\textsubscript{2} (15.1 μL, 0.11 mmol, 1.1 equiv.) in 1.0 mL of propionitrile at -60 °C, following Procedure 3. Purification by silica gel chromatography using hexanes/diethyl ether (14:1) afforded product 13a (9.5 mg, 35 % conversion). 36 % of A9 Starting material was also recovered as well as 26 % aldehyde.

1H-NMR: (CDCl\textsubscript{3}, 400 MHz) δ 8.18-8.16 (m, 2H), 7.53-7.50 (m, 2H), 7.40-7.23 (m, 10H), 6.72-6.68 (m, 1H), 6.53-6.44 (m, 3H), 4.44 (t, \(J = 5.9\) Hz, 1H)

13C-NMR: (CDCl\textsubscript{3}, 100 MHz) δ 146.76, 143.75, 141.84, 137.07, 136.96, 131.46, 130.78, 129.96, 128.93, 128.83, 128.59, 128.08, 127.5, 128.98, 127.57, 126.98, 126.77, 126.30, 123.98, 123.92, 51.78

((1-methoxycyclohexyl)ethynyl)benzene (14a)

\[
\text{MeO} \quad \equiv \quad \text{Ph}
\]

Derived from 1,1-dimethoxycyclohexane (K1) (14.4 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro(phenylethynyl)borate (S1) (31.2 mg, 0.15 mmol, 1.5 equiv.) and HBF\textsubscript{4}·OEt\textsubscript{2} (20.6 μL, 0.15 mmol, 1.5 equiv.) in 1.0 mL of propionitrile, following Procedure 4. Purification by silica gel chromatography using hexanes/diethyl ether (gradient: 100:0 \(\rightarrow\) 9:1) afforded product 14a (11.2 mg, 53% yield) as a clear, colourless oil.
FT-IR: ν 2932.83, 2856.64, 1489.61, 1443.89, 1092.20, 925.33, 754.99, 690.32 cm$^{-1}$

1H-NMR: (CDCl$_3$, 400 MHz) δ 7.46-7.43 (m, 2H), 7.32-7.29 (m, 3H), 3.44 (s, 3H), 2.02-1.99 (m, 2H), 1.73-1.54 (m, 7H), 1.34-1.32 (m, 1H)

13C-NMR: (CDCl$_3$, 100 MHz) δ 131.69, 128.21, 128.09, 123.05, 90.31, 86.12, 74.35, 50.79, 36.83, 25.51, 22.90

1-chloro-3-((1-methoxycyclohexyl)ethynyl)benzene (14b)

![Chemical structure](image)

Derived from 1,1-dimethoxycyclohexane (K1) (14.4 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro((3-chlorophenyl)ethynyl)borate (S7) (36.4 mg, 0.15 mmol, 1.5 equiv.) and HBF$_4$·OEt$_2$ (20.6 μL, 0.15 mmol, 1.5 equiv.) in 1.0 mL of propionitrile, following Procedure 4. Purification by silica gel chromatography using hexanes/diethyl ether (gradient: 100:0 → 9:1) afforded product 14b (12.6 mg, 51% yield) as a clear, colourless oil.

FT-IR: ν 2932.77, 2856.81, 1592.90, 1473.79, 1446.85, 1092.37, 925.40, 781.85, 704.05, 681.08 cm$^{-1}$

1H-NMR: (CDCl$_3$, 400 MHz) δ 7.43 (t, $J = 1.6$ Hz, 1H), 7.33-7.21 (m, 3H), 3.42 (s, 3H), 2.00-1.96 (m, 2H), 1.74-1.53 (m, 7H), 1.35-1.32 (m, 1H)

13C-NMR: (CDCl$_3$, 100 MHz) δ 134.05, 131.58, 129.80, 129.44, 128.39, 124.72, 91.71, 84.72, 74.29, 50.84 , 36.70, 25.44, 22.85

HRMS: C$_{15}$H$_{17}$ClO: calculated: 248.0968, found: 248.0971
(4-(tert-buty1)-1-methoxycyclohexyl)ethynyl)benzene (15a)

\[
\text{MeO} \equiv \text{H}
\]

Derived from 4-(t-butyl)-1,1-dimethoxycyclohexane (K2) (20.0 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro(phenylethynyl)borate (S1) (31.2 mg, 0.15 mmol, 1.5 equiv.) and HBF\(_4\)·OEt\(_2\) (20.6 μL, 0.15 mmol, 1.5 equiv.) in 1.0 mL of propionitrile, following Procedure 4. Purification by silica gel chromatography using hexanes/diethyl ether (gradient: 100:0 → 9:1) afforded product 15a (15.9 mg, 59% yield) as a clear, colourless oil.

FT-IR: ν 2940.89, 2867.46, 1491.20, 1365.28, 1081.75, 1065.16, 903.68, 754.68, 690.14 cm\(^{-1}\)

\(^1\)H-NMR: (CDCl\(_3\), 400 MHz) δ 7.44-7.41 (m, 2H), 7.31-7.28 (m, 3H), 3.38 (s, 3H), 2.27-2.22 (m, 2H), 1.68-1.54 (m, 4H), 1.37-1.26 (m, 2H), 1.08-1.01 (m, 1H), 0.87 (s, 9H)

\(^13\)C-NMR: (CDCl\(_3\), 100 MHz) δ 131.68, 128.18, 128.02, 123.05, 91.78, 84.00, 71.68, 50.80, 47.24, 36.19, 32.44, 27.54, 21.80

HRMS: C\(_{19}\)H\(_{26}\)O: calculated: 270.1984, found: 270.1986

1-((4-(tert-buty1)-1-methoxycyclohexyl)ethynyl)naphthalene (15b)

\[
\text{MeO} \equiv \text{H}
\]

69
Derived from 4-(t-butyl)-1,1-dimethoxycyclohexane (K2) (20.0 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro((4-naphthyl)ethynyl)borate (S3) (38.7 mg, 0.15 mmol, 1.5 equiv.) and HBF$_4$·OEt$_2$ (20.6 μL, 0.15 mmol, 1.5 equiv.) in 1.0 mL of propionitrile, following Procedure 4. Purification by silica gel chromatography using hexanes/diethyl ether (gradient: 100:0 → 9:1) afforded product 15b (15.1 mg, 47% yield) as a clear, colourless oil.

FT-IR: ν 2940.29, 2866.54, 1393.99, 1364.82, 1129.70, 1075.75, 797.19, 771.03 cm$^{-1}$

1H-NMR: (CDCl$_3$, 400 MHz) δ 8.31 (dd, $J = 8.2$, 0.8 Hz, 1H), 7.85-7.80 (m, 2H), 7.67 (dd, $J = 7.0$, 1.2 Hz, 1H), 7.59-7.50 (m, 2H), 7.41 (dd, $J = 8.2$, 7.4 Hz, 1H), 3.48 (s, 3H), 2.40-2.35 (m, 2H), 1.81-1.74 (td, $J = 13.7$, 3.9 Hz, 2H), 1.64-1.60 (m, 2H), δ 1.44-1.36 (m, 2H), 1.14-1.10 (m, 1H), 0.90 (s, 9H)

13C-NMR: (CDCl$_3$, 100 MHz) δ 133.34, 133.15, 130.36, 128.53, 128.24, 126.68, 126.30, 126.10, 125.15, 120.66, 96.90, 82.04, 72.03, 51.03, 47.29, 36.43, 32.48, 27.56, 21.87

HRMS: C$_{23}$H$_{28}$O: calculated: 320.2140, found: 320.2142

1-((4-(tert-butyl)-1-methoxycyclohexyl)ethynyl)-3-fluorobenzene (15c)

![15c](attachment:scheme)

Derived from 4-(t-butyl)-1,1-dimethoxycyclohexane (K2) (20.0 mg, 0.10 mmol, 1.0 equiv.), Potassium trifluoro((3-fluorophenyl)ethynyl)borate (S6) (33.9 mg, 0.15 mmol, 1.5 equiv.) and HBF$_4$·OEt$_2$ (20.6 μL, 0.15 mmol, 1.5 equiv.) in 1.0 mL of propionitrile, following Procedure 4. Purification by silica gel chromatography using hexanes/diethyl ether (gradient: 100:0 → 9:1) afforded product 15c (17.9 mg, 62% yield) as a white solid.

FT-IR: ν 2931.81, 1259.22, 1072.43, 1014.69, 862.87, 797.72, 775.11 cm$^{-1}$
$^1\text{H-NMR}$: (CDCl$_3$, 400 MHz) δ 7.27-7.19 (m, 2H), 7.13-7.10 (ddd, $J=9.6$, 2.5, 1.2 Hz, 1H), 7.03-6.98 (m, 1H), 3.37 (s, 3H), 2.25-2.21 (m, 2H), 1.66-1.54 (m, 4H), 1.36-1.26 (m, 2H), 1.08-1.00 (m, 1H), 0.87 (s, 9H)

$^{13}\text{C-NMR}$: (CDCl$_3$, 100 MHz) δ 129.74 (d, $J=9.2$ Hz), 127.55 (d, $J=3.1$ Hz), 124.85, 118.60, 118.38, 115.38 (d, $J=21$ Hz), 92.81, 82.81, 71.65, 50.86, 47.19, 36.08, 32.44, 27.51, 21.74

HRMS: C$_{19}$H$_{25}$FO: calculated: 288.1889, found: 288.1891
Bu-\(\equiv\)BF\(_3\)K

S4
S6

BF_3K

274_3-FLUOROPHENYLACETYLENETRIFLUORODORATE_F_DMSO.ESP

20150218_MERCURY_490_BORON

Normalized intensity

Chemical Shift (ppm)

Normalized intensity

Chemical Shift (ppm)